Non-Markovian Quantum State Diffusion (NMQSD) has turned out to be an efficient method to calculate excitonic properties of aggregates composed of organic chromophores, taking into account the coupling of electronic transitions to vibrational modes of the chromophores. NMQSD is an open quantum system approach that incorporates environmental degrees of freedom (the vibrations in our case) in a stochastic way. We show in this paper that for linear optical spectra (absorption, circular dichroism), no stochastics is needed, even for finite temperatures. Thus, the spectra can be obtained by propagating a single trajectory. To this end, we map a finite temperature environment to the zero temperature case using the so-called thermofield method. The resulting equations can then be solved efficiently by standard integrators.

1.
G.
Scheibe
,
Kolloid-Z.
82
,
1
(
1938
).
2.
L. D.
Bakalis
and
J.
Knoester
,
J. Lumin.
87–89
,
66
(
2000
).
3.
A.
Eisfeld
,
Chem. Phys. Lett.
445
,
321
(
2007
).
4.
F. C.
Spano
,
J. Am. Chem. Soc.
131
,
4267
(
2009
).
5.
C.
Spitz
,
S.
Dähne
,
A.
Ouart
, and
H.-W.
Abraham
,
J. Phys. Chem. B
104
,
8664
(
2000
).
6.
R. F.
Fink
,
J.
Seibt
,
V.
Engel
,
M.
Renz
,
M.
Kaupp
,
S.
Lochbrunner
,
H.-M.
Zhao
,
J.
Pfister
,
F.
Würthner
, and
B.
Engels
,
J. Am. Chem. Soc.
130
,
12858
(
2008
).
7.
K.
Griebenow
,
A. R.
Holzwarth
,
F.
van Mourik
, and
R.
van Grondelle
,
Biochim. Biophys. Acta, Bioenerg.
1058
,
194
(
1991
).
8.
H.
van Amerongen
,
L.
Valkunas
, and
R.
van Grondelle
,
Photosynthetic Excitons
(
World Scientific
,
Singapore
,
2000
).
9.
M. T. W.
Milder
,
B.
Brüggemann
,
R.
van Grondelle
, and
J. L.
Herek
,
Photosynth. Res.
104
,
257
(
2010
).
10.
J.
Adolphs
and
T.
Renger
,
Biophys. J.
91
,
2778
(
2006
).
11.
A.
Eisfeld
,
J.
Seibt
, and
V.
Engel
,
Chem. Phys. Lett.
467
,
186
(
2008
).
12.
A.
Witkowski
and
W.
Moffitt
,
J. Chem. Phys.
33
,
872
(
1960
).
13.
T.
Förster
, “
Delocalized excitation and excitation transfer
,” in
Modern Quantum Chemistry
, edited by
O.
Sinanoğlu
(
Academic Press
,
1965
), pp.
93
137
Chap. III B 1.
14.
J. S.
Briggs
and
A.
Herzenberg
,
Mol. Phys.
21
,
865
(
1971
).
15.
R. P.
Hemenger
,
J. Chem. Phys.
66
,
1795
(
1977
).
16.
A. V.
Lukashin
and
M. D.
Frank-Kamenetskiĭ
,
Chem. Phys. Lett.
45
,
36
(
1977
).
17.
R.
Friesner
and
R.
Silbey
,
J. Chem. Phys.
74
,
1166
(
1981
).
18.
P. O. J.
Scherer
and
S. F.
Fischer
,
Chem. Phys.
86
,
269
(
1984
).
19.
O.
Kühn
,
T.
Renger
, and
V.
May
,
Chem. Phys.
204
,
99
(
1996
).
20.
A.
Damjanović
,
I.
Kosztin
,
U.
Kleinekathöfer
, and
K.
Schulten
,
Phys. Rev. E
65
,
031919
(
2002
).
21.
W. J. D.
Beenken
,
M.
Dahlbom
,
P.
Kjellberg
, and
T.
Pullerits
,
J. Chem. Phys.
117
,
5810
(
2002
).
22.
M.
Yang
and
G. R.
Fleming
,
Chem. Phys.
282
,
163
(
2002
).
23.
A.
Eisfeld
,
R.
Kniprath
, and
J. S.
Briggs
,
J. Chem. Phys.
126
,
104904
(
2007
).
24.
A.
Ishizaki
and
G. R.
Fleming
,
J. Chem. Phys.
130
,
234111
(
2009
).
25.
J.
Prior
,
A. W.
Chin
,
S. F.
Huelga
, and
M. B.
Plenio
,
Phys. Rev. Lett.
105
,
050404
(
2010
).
26.
J.
Roden
,
A.
Eisfeld
,
M.
Dvořák
,
O.
Bünermann
, and
F.
Stienkemeier
,
J. Chem. Phys.
134
,
054907
(
2011
).
27.
W. T.
Strunz
,
Phys. Lett. A
224
,
25
(
1996
).
28.
L.
Diósi
,
Quantum Semiclassical Opt.: J. Eur. Opt. Soc. Part B
8
,
309
(
1996
).
29.
L.
Diósi
and
W. T.
Strunz
,
Phys. Lett. A
235
,
569
(
1997
).
30.
J.
Roden
,
A.
Eisfeld
,
W.
Wolff
, and
W. T.
Strunz
,
Phys. Rev. Lett.
103
,
058301
(
2009
).
31.
J.
Roden
,
W. T.
Strunz
, and
A.
Eisfeld
,
Int. J. Mod. Phys. B
24
,
5060
(
2010
).
32.
J.
Roden
,
W. T.
Strunz
, and
A.
Eisfeld
,
J. Chem. Phys.
134
,
034902
(
2011
).
33.
G.
Ritschel
,
J.
Roden
,
W. T.
Strunz
, and
A.
Eisfeld
,
New J. Phys.
13
,
113034
(
2011
).
34.
G.
Ritschel
,
J.
Roden
,
W. T.
Strunz
,
A.
Aspuru-Guzik
, and
A.
Eisfeld
,
J. Phys. Chem. Lett.
2
,
2912
(
2011
).
35.
L.
Diósi
,
N.
Gisin
, and
W. T.
Strunz
,
Phys. Rev. A
58
,
1699
(
1998
).
36.
T.
Yu
,
Phys. Rev. A
69
,
062107
(
2004
).
37.
V.
May
and
O.
Kühn
,
Charge and Energy Transfer Dynamics in Molecular Systems
, 3rd ed. (
Wiley-VCH
,
2011
).
38.
S.
Mukamel
,
Principles of Nonlinear Optical Spectroscopy
(
Oxford University Press, Inc.
,
1995
).
39.
L.
Rosenfeld
,
Z. Phys.
52
,
161
(
1929
).
40.
J. G.
Kirkwood
,
J. Chem. Phys.
5
,
479
(
1937
).
41.
G. W.
Semenoff
and
H.
Umezawa
,
Nucl. Phys. B
220
,
196
(
1983
).
42.
V.
Bargmann
,
Commun. Pure Appl. Math.
14
,
187
(
1961
).
43.
J.-P.
Gazeau
,
Coherent States in Quantum Physics
(
Wiley-VCH
,
2009
).
44.
W. T.
Strunz
,
L.
Diósi
, and
N.
Gisin
,
Phys. Rev. Lett.
82
,
1801
(
1999
).
45.
W. T.
Strunz
and
T.
Yu
,
Phys. Rev. A
69
,
052115
(
2004
).
46.
J.
Jing
,
X.
Zhao
,
J. Q.
You
, and
T.
Yu
,
Phys. Rev. A
85
,
042106
(
2012
).
47.
D.
Suess
,
A.
Eisfeld
, and
W. T.
Strunz
,
Phys. Rev. Lett.
113
,
150403
(
2014
).
48.
G.
Ritschel
and
A.
Eisfeld
,
J. Chem. Phys.
141
,
094101
(
2014
).
49.
C.
Meier
and
D. J.
Tannor
,
J. Chem. Phys.
111
,
3365
(
1999
).
50.
J.
Hu
,
R.-X.
Xu
, and
Y.
Yan
,
J. Chem. Phys.
133
,
101106
(
2010
).
51.
J.
Roden
,
W. T.
Strunz
,
K. B.
Whaley
, and
A.
Eisfeld
,
J. Chem. Phys.
137
,
204110
(
2012
).
52.
A.
Rodger
and
B.
Nordén
,
Circular Dichroism and Linear Dichroism
(
Oxford University Press
,
1997
).
53.
R. E.
Merrifield
,
Radiat. Res.
20
,
154
(
1963
).
54.
R. L.
Fulton
and
M.
Gouterman
,
J. Chem. Phys.
41
,
2280
(
1964
).
55.
A.
Witkowski
, “
Coupling of the molecular exciton with the nuclear vibrations
,” in
Modern Quantum Chemistry III
, edited by
O.
Sinanoğlu
(
Academic Press
,
1965
), pp.
161
175
.
56.
A.
Eisfeld
,
L.
Braun
,
W. T.
Strunz
,
J. S.
Briggs
,
J.
Beck
, and
V.
Engel
,
J. Chem. Phys.
122
,
134103
(
2005
).
57.
J.
Seibt
,
P.
Marquetand
,
V.
Engel
,
Z.
Chen
,
V.
Dehm
, and
F.
Würthner
,
Chem. Phys.
328
,
354
(
2006
).
58.
P. B.
Walczak
,
A.
Eisfeld
, and
J. S.
Briggs
,
J. Chem. Phys.
128
,
044505
(
2008
).
59.
S.
Valleau
,
A.
Eisfeld
, and
A.
Aspuru-Guzik
,
J. Chem. Phys.
137
,
224103
(
2012
).
60.
T.
Yu
,
L.
Diósi
,
N.
Gisin
, and
W. T.
Strunz
,
Phys. Rev. A
60
,
91
(
1999
).
61.
N.
Gisin
and
I. C.
Percival
,
J. Phys. A
25
,
5677
(
1992
).
62.
I.
Percival
,
Quantum State Diffusion
(
Cambridge University Press
,
1998
).
63.

If one extends the dipole-auto-correlation function c(t) to negative times such that c(−t) = c(t), the transition strength can be calculated as F(ω)=dteiωtc(t).

64.

The spectra are converged in the sense that by increasing the order of the hierarchy from 9 to 10 the presented plots do not change noticeably on the presented scale. In fact already at smaller order most spectra can be considered to be converged.

You do not currently have access to this content.