Optimizations of atomic positions belong to the most commonly performed tasks in electronic structure calculations. Many simulations like global minimum searches or characterizations of chemical reactions require performing hundreds or thousands of minimizations or saddle computations. To automatize these tasks, optimization algorithms must not only be efficient but also very reliable. Unfortunately, computational noise in forces and energies is inherent to electronic structure codes. This computational noise poses a severe problem to the stability of efficient optimization methods like the limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm. We here present a technique that allows obtaining significant curvature information of noisy potential energy surfaces. We use this technique to construct both, a stabilized quasi-Newton minimization method and a stabilized quasi-Newton saddle finding approach. We demonstrate with the help of benchmarks that both the minimizer and the saddle finding approach are superior to comparable existing methods.

1.
D.
Wales
,
Energy Landscapes: Applications to Clusters, Biomolecules and Glasses
(
Cambridge University Press
,
2003
).
2.
H.
Eyring
,
J. Chem. Phys.
3
,
107
(
1935
).
3.
4.
P.
Pulay
,
J. Comput. Chem.
3
,
556
(
1982
).
5.
M. R.
Hestenes
and
E.
Stiefel
,
J. Res. Natl. Bur. Stand.
49
,
409
(
1952
).
6.
C. G.
Broyden
,
J. Appl. Math.
6
,
76
90
(
1970
).
7.
R.
Fletcher
,
Comput. J.
13
,
317
322
(
1970
).
8.
9.
D. F.
Shanno
,
Math. Comput.
24
,
647
656
(
1970
).
11.
D. C.
Liu
and
J.
Nocedal
,
Math. Program.
45
,
503
528
(
1989
).
12.
E.
Bitzek
,
P.
Koskinen
,
F.
Gähler
,
M.
Moseler
, and
P.
Gumbsch
,
Phys. Rev. Lett.
97
(
2006
).
13.
F.
Tassone
,
F.
Mauri
, and
R.
Car
,
Phys. Rev. B
50
,
10561
10573
(
1994
).
14.
M.
Probert
,
J. Comput. Phys.
191
,
130
146
(
2003
).
15.
G.
Henkelman
and
H.
Jonsson
,
J. Chem. Phys.
111
,
7010
(
1999
).
16.
J.
Kästner
and
P.
Sherwood
,
J. Chem. Phys.
128
,
014106
(
2008
).
17.
P.-O.
Löwdin
,
Adv. Phys.
5
,
1
171
(
1956
).
18.
I.
Mayer
,
Simple Theorems, Proofs, and Derivations in Quantum Chemistry
(
Springer
,
New York
,
2003
).
19.
F.
Jensen
,
Introduction to Computational Chemistry
(
John Wiley & Sons
,
2007
).
20.
D.
Weinstein
,
Proc. Natl. Acad. Sci. U. S. A.
20
,
529
(
1934
).
21.
Y.
Suzuki
and
K.
Varga
,
Stochastic Variational Approach to Quantum-Mechanical Few-Body Problems
(
Springer
,
1998
).
22.
T. J.
Lenosky
,
B.
Sadigh
,
E.
Alonso
,
V. V.
Bulatov
,
T. D. d. l.
Rubia
,
J.
Kim
,
A. F.
Voter
, and
J. D.
Kress
,
Modell. Simul. Mater. Sci. Eng.
8
,
825
841
(
2000
).
23.
S.
Goedecker
,
Comput. Phys. Commun.
148
,
124
135
(
2002
).
24.
S.
Goedecker
,
F.
Lancon
, and
T.
Deutsch
,
Phys. Rev. B
64
,
161102
(
2001
).
25.
C. J.
Cerjan
,
J. Chem. Phys.
75
,
2800
(
1981
).
26.
D. J.
Wales
,
J. Chem. Soc., Faraday Trans.
89
,
1305
(
1993
).
27.
M.
Page
and
J. W.
McIver
,
J. Chem. Phys.
88
,
922
(
1988
).
28.
G.
Mills
and
K. W.
Jacobsen
, in
Classical and Quantum Dynamics in Condensed Phase Simulations
, edited by
G. C. B. J.
Berne
and
D. F.
Coker
(
World Scientific
,
1998
), p.
385
.
29.
L.
Genovese
,
A.
Neelov
,
S.
Goedecker
,
T.
Deutsch
,
S. A.
Ghasemi
,
A.
Willand
,
D.
Caliste
,
O.
Zilberberg
,
M.
Rayson
,
A.
Bergman
, and
R.
Schneider
,
J. Chem. Phys.
129
,
014109
(
2008
).
30.
S.
Mohr
,
L. E.
Ratcliff
,
P.
Boulanger
,
L.
Genovese
,
D.
Caliste
,
T.
Deutsch
, and
S.
Goedecker
,
J. Chem. Phys.
140
,
204110
(
2014
).
31.
D.
Case
,
V.
Babin
,
J.
Berryman
,
R.
Betz
,
Q.
Cai
,
D.
Cerutti
,
T.
Cheatham
 III
,
T.
Darden
,
R.
Duke
,
H.
Gohlke
,
A.
Goetz
,
S.
Gusarov
,
N.
Homeyer
,
P.
Janowski
,
J.
Kaus
,
I.
Kolossvry
,
A.
Kovalenko
,
T.
Lee
,
S.
LeGrand
,
T.
Luchko
,
R.
Luo
,
B.
Madej
,
K.
Merz
,
F.
Paesani
,
D.
Roe
,
A.
Roitberg
,
C.
Sagui
,
R.
Salomon Ferrer
,
G.
Seabra
,
C.
Simmerling
,
W.
Smith
,
J.
Swails
,
R.
Walker
,
J.
Wang
,
R.
Wolf
,
X.
Wu
, and
P.
Kollman
,
AMBER 14
(
University of California
,
San Francisco
,
2014
).
32.
A.
Sadeghi
,
S. A.
Ghasemi
,
B.
Schaefer
,
S.
Mohr
,
M. A.
Lill
, and
S.
Goedecker
,
J. Chem. Phys.
139
,
184118
(
2013
).
33.
S. T.
Chill
,
M.
Welborn
,
R.
Terrell
,
L.
Zhang
,
J.-C.
Berthet
,
A.
Pedersen
,
H.
Jnsson
, and
G.
Henkelman
,
Modell. Simul. Mater. Sci. Eng.
22
,
055002
(
2014
).
34.
A.
Heyden
,
A. T.
Bell
, and
F. J.
Keil
,
J. Chem. Phys.
123
,
224101
(
2005
).
35.
R. A.
Olsen
,
G. J.
Kroes
,
G.
Henkelman
,
A.
Arnaldsson
, and
H.
Jonsson
,
J. Chem. Phys.
121
,
9776
(
2004
).
36.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
47
,
558
561
(
1993
).
37.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
49
,
14251
14269
(
1994
).
38.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
,
15
50
(
1996
).
39.
G.
Kresse
,
Phys. Rev. B
54
,
11169
11186
(
1996
).
40.
G.
Kresse
,
Phys. Rev. B
59
,
1758
1775
(
1999
).
41.
S.
Goedecker
,
J. Chem. Phys.
120
,
9911
(
2004
).
42.
S.
Goedecker
,
W.
Hellmann
, and
T.
Lenosky
,
Phys. Rev. Lett.
95
,
055501
(
2005
).
43.
B.
Schaefer
,
S.
Mohr
,
M.
Amsler
, and
S.
Goedecker
,
J. Chem. Phys.
140
,
214102
(
2014
).
44.
See http://bigdft.org for source codes for SQNM and SQNS.
You do not currently have access to this content.