We introduce a new method to compute the optical absorption spectra of complex molecular systems in solution, based on the Liouville approach to time-dependent density-functional perturbation theory and the revised self-consistent continuum solvation model. The former allows one to obtain the absorption spectrum over a whole wide frequency range, using a recently proposed Lanczos-based technique, or selected excitation energies, using the Casida equation, without having to ever compute any unoccupied molecular orbitals. The latter is conceptually similar to the polarizable continuum model and offers the further advantages of allowing an easy computation of atomic forces via the Hellmann-Feynman theorem and a ready implementation in periodic-boundary conditions. The new method has been implemented using pseudopotentials and plane-wave basis sets, benchmarked against polarizable continuum model calculations on 4-aminophthalimide, alizarin, and cyanin and made available through the Quantum ESPRESSO distribution of open-source codes.

1.
O. B.
Malcioglu
,
A.
Calzolari
,
R.
Gebauer
,
D.
Varsano
, and
S.
Baroni
,
J. Am. Chem. Soc.
133
,
15425
(
2011
).
2.
J.
Tomasi
,
B.
Mennucci
, and
R.
Cammi
,
Chem. Rev.
105
,
2999
(
2005
).
3.
S.
Miertus
,
E.
Scrocco
, and
J.
Tomasi
,
Chem. Phys.
55
,
117
(
1981
).
4.
A.
Fortunelli
and
J.
Tomasi
,
Chem. Phys. Lett.
231
,
34
(
1994
).
5.
B.
Mennucci
and
J.
Tomasi
,
J. Chem. Phys.
106
,
5151
(
1997
).
6.
V.
Barone
,
M.
Cossi
, and
J.
Tomasi
,
J. Chem. Phys.
107
,
3210
(
1997
).
7.
B.
Mennucci
,
J. Phys. Chem. Lett.
1
,
1666
(
2010
).
8.
A.
Klamt
and
G.
Schüürmann
,
J. Chem. Soc., Perkin Trans. 2
1993
,
799
.
9.
O.
Andreussi
,
I.
Dabo
, and
N.
Marzari
,
J. Chem. Phys.
136
,
064102
(
2012
).
10.
C.
Dupont
,
O.
Andreussi
, and
N.
Marzari
,
J. Chem. Phys.
139
,
214110
(
2013
).
11.
O.
Andreussi
and
N.
Marzari
,
Phys. Rev. B
90
,
245101
(
2014
).
12.
J.-L.
Fattebert
and
F.
Gygi
,
J. Comput. Chem.
23
,
662
(
2002
).
13.
J.-L.
Fattebert
and
F.
Gygi
,
Int. J. Quantum Chem.
93
,
139
(
2003
).
14.
D. A.
Scherlis
,
J.-L.
Fattebert
,
F.
Gygi
,
M.
Cococcioni
, and
N.
Marzari
,
J. Chem. Phys.
124
,
074103
(
2006
).
15.
J.
Dziedzic
,
H.
Helal
,
C.-K.
Skylaris
,
A.
Mostofi
, and
M.
Payne
,
Europhys. Lett.
95
,
43001
(
2011
).
16.
B.
Mennucci
,
A.
Toniolo
, and
C.
Cappelli
,
J. Chem. Phys.
111
,
7197
(
1999
).
17.
M.
Cossi
and
V.
Barone
,
J. Chem. Phys.
112
,
2427
(
2000
).
18.
R.
Cammi
,
S.
Corni
,
B.
Mennucci
, and
J.
Tomasi
,
J. Chem. Phys.
122
,
104513
(
2005
).
19.
R.
Cammi
and
B.
Mennucci
,
J. Chem. Phys.
110
,
9877
(
1999
).
20.
M.
Cossi
and
V.
Barone
,
J. Chem. Phys.
115
,
4708
(
2001
).
21.
Fundamentals of Time-Dependent Density Functional Theory
,
Lecture Notes in Physics
, edited by
M. A. L.
Marques
,
N. T.
Maitra
,
F. M. S.
Nogueira
,
E. K. U.
Gross
, and
A.
Rubio
(
Springer-Verlag
,
Berlin, Heidelberg
,
2012
), Vol.
837
.
22.
R.
Cammi
,
J. Chem. Phys.
131
,
164104
(
2009
).
23.
R.
Cammi
,
R.
Fukuda
,
M.
Ehara
, and
H.
Nakatsuji
,
J. Chem. Phys.
133
,
024104
(
2010
).
24.
B.
Walker
,
A. M.
Saitta
,
R.
Gebauer
, and
S.
Baroni
,
Phys. Rev. Lett.
96
,
113001
(
2006
).
25.
D.
Rocca
,
R.
Gebauer
,
Y.
Saas
, and
S.
Baroni
,
J. Chem. Phys.
128
,
154105
(
2008
).
26.
S.
Baroni
and
R.
Gebauer
, “
The Liouville-Lanczos approach to time-dependent density-functional (perturbation) theory
,” in
Fundamentals of Time-Dependent Density Functional Theory
, edited by
M. A. L.
Marques
,
N. T.
Maitra
,
F. M. S.
Nogueira
,
E. K. U.
Gross
, and
A.
Rubio
(
Springer-Verlag
,
Berlin, Heidelberg
,
2012
), Vol.
837
, Chap. 19, pp.
375
390
.
27.
X.
Ge
,
S. J.
Binnie
,
D.
Rocca
,
R.
Gebauer
, and
S.
Baroni
,
Comput. Phys. Commun.
185
,
2080
(
2014
).
28.
D. H.
Douma
,
B.
M’Passi-Mabiala
, and
R.
Gebauer
,
J. Chem. Phys.
137
,
154314
(
2012
).
29.
B.
Mennucci
,
J. Am. Chem. Soc.
124
,
1506
(
2002
).
30.
J.
Kongsted
and
B.
Mennucci
,
J. Phys. Chem. A
111
,
9890
(
2007
).
31.
P.
Giannozzi
,
S.
Baroni
,
N.
Bonini
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
G.
Chiarotti
,
M.
Cococcioni
,
I.
Dabo
 et al.,
J. Phys.: Condens. Matter
21
,
395502
(2009); see also http://www.quantum-espresso.org.
32.

The calculations were done with gaussian 09 (Ref. 49), but using the version of PCM which was the default in gaussian 03 (Ref. 50), as specified by the keyword g03defaults. Note, only the electrostatic effects were included in the PCM calculation.

33.
M.
Cococcioni
,
F.
Mauri
,
G.
Ceder
, and
N.
Marzari
,
Phys. Rev. Lett.
94
,
145501
(
2005
).
34.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
35.
W.
Kohn
and
L.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
36.
V. M.
Sanchez
,
M.
Sued
, and
D. A.
Scherlis
,
J. Chem. Phys.
131
,
174108
(
2009
).
37.
E.
Runge
and
E.
Gross
,
Phys. Rev. Lett.
52
,
997
(
1984
).
38.
E. K. U.
Gross
,
J. F.
Dobson
, and
M.
Petersilka
,
Density Functional Theory of Time-Dependent Phenomena
,
Topics in Current Chemistry
(
Springer-Verlag
,
Berlin
,
1996
).
39.
O. B.
Malcioglu
,
R.
Gebauer
,
D.
Rocca
, and
S.
Baroni
,
Comput. Phys. Commun.
182
,
1744
(
2011
).
40.
M. E.
Casida
,
Recent Developments and Applications of Modern Density Functional Theory
(
Elsevier
,
Amsterdam
,
1996
).
41.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
42.
A.
Dreuw
,
J. L.
Weisman
, and
M.
Head-Gordon
,
J. Chem. Phys.
119
,
2943
(
2003
).
43.
A.
Dreuw
and
M.
Head-Gordon
,
Chem. Phys. Lett.
426
,
231
(
2006
).
44.
A. D.
Becke
,
J. Chem. Phys.
98
,
1372
(
1993
).
45.
K.
Kim
and
K. D.
Jordan
,
J. Phys. Chem.
98
,
10089
(
1994
).
46.
P. J.
Stephens
,
F. J.
Devlin
,
C. F.
Chabalowski
, and
M. J.
Frisch
,
J. Phys. Chem.
98
,
11623
(
1994
).
47.
C.
Adamo
and
V.
Barone
,
J. Chem. Phys.
110
,
6158
(
1999
).
48.
S.
Baroni
,
S.
de Gironcoli
,
A. D.
Corso
, and
P.
Giannozzi
,
Rev. Mod. Phys.
73
,
515
(
2001
).
49.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
B.
Mennucci
,
G. A.
Petersson
 et al.,
gaussian 09, Revision C.01
, Gaussian, Inc., Wallingford, CT, 2009; http://www.gaussian.com.
50.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
J. A.
Montgomery
, Jr.
,
T.
Vreven
,
K. N.
Kudin
,
J. C.
Burant
 et al.,
gaussian 03, Revision C.02
, Gaussian, Inc., Wallingford, CT, 2004; http://www.gaussian.com.
51.

For the carbon tetrachloride solvent we have used the same fitting parameters nmin and nmax (which define the cavity) as were optimized in water for 240 neutral molecules in Ref. 9.

52.

H.pbe-rrkjus.UPF, O.pbe-rrkjus.UPF, C.pbe-rrkjus.UPF, and N.pbe-rrkjus.UPF.

53.

H.blyp-vbc.UPF, O.blyp-mt.UPF, C.blyp-mt.UPF, and N.blyp-mt.UPF.

54.
See http://www.quantum-espresso.org/pseudopotentials for a pseudopotential library.
55.
A.
Marini
,
A.
Munoz-Losa
,
A.
Biancardi
, and
B.
Mennucci
,
J. Phys. Chem. B
114
,
17128
(
2010
).
You do not currently have access to this content.