In this study, we investigate the accuracy of a recently developed coherent modified Redfield theory (CMRT) in simulating excitation energy transfer (EET) dynamics. The CMRT is a secular non-Markovian quantum master equation that is derived by extending the modified Redfield theory to treat coherence dynamics in molecular excitonic systems. Herein, we systematically survey the applicability of the CMRT in a large EET parameter space through the comparisons of the CMRT EET dynamics in a dimer system with the numerically exact results. The results confirm that the CMRT exhibits a broad applicable range and allow us to locate the specific parameter regimes where CMRT fails to provide adequate results. Moreover, we propose an accuracy criterion based on the magnitude of second-order perturbation to characterize the applicability of CMRT and show that the criterion summarizes all the benchmark results and the physics described by CMRT. Finally, we employ the accuracy criterion to quantitatively compare the performance of CMRT to that of a small polaron quantum master equation approach. The comparison demonstrates the complementary nature of these two methods, and as a result, the combination of the two methods provides accurate simulations of EET dynamics for the full parameter space investigated in this study. Our results not only delicately evaluate the applicability of the CMRT but also reveal new physical insights for factors controlling the dynamics of EET that should be useful for developing more accurate and efficient methods for simulations of EET dynamics in molecular aggregate systems.

1.
R. E.
Blankenship
,
Molecular Mechanisms of Photosynthesis
(
Wiley-Blackwell
,
2002
).
2.
R. J.
Cogdell
,
A. T.
Gardiner
,
H.
Hashimoto
, and
T. H. P.
Brotosudarmo
,
Photochem. Photobiol. Sci.
7
,
1150
(
2008
).
3.
G. D.
Scholes
,
G. R.
Fleming
,
A.
Olaya-Castro
, and
R.
van Grondelle
,
Nat. Chem.
3
,
763
(
2011
).
4.
F.
Odobel
,
Y.
Pellegrin
, and
J.
Warnan
,
Energy Environ. Sci.
6
,
2041
(
2013
).
5.
Z.
Chen
,
E. M.
Grumstrup
,
A. T.
Gilligan
,
J. M.
Papanikolas
, and
K. S.
Schanze
,
J. Phys. Chem. B
118
,
372
(
2014
).
6.
G. D.
Scholes
and
G. R.
Fleming
,
Adv. Chem. Phys.
132
,
57
(
2005
).
7.
J.
Cao
and
R. J.
Silbey
,
J. Phys. Chem. A
113
,
13825
(
2009
).
8.
S.
Jang
and
Y.-C.
Cheng
,
WIREs Comput. Mol. Sci.
3
,
84
(
2013
).
9.
A.
Ishizaki
and
G. R.
Fleming
,
J. Chem. Phys.
130
,
234110
(
2009
).
10.
A.
Olaya-Castro
and
G. D.
Scholes
,
Int. Rev. Phys. Chem.
30
,
49
(
2011
).
11.
L. A.
Pachon
and
P.
Brumer
,
Phys. Chem. Chem. Phys.
14
,
10094
(
2012
).
12.
V.
Novoderezhkin
and
R.
van Grondelle
,
J. Phys. Chem. B
117
,
11076
(
2013
).
13.
14.
R.-X.
Xu
and
Y.
Yan
,
Phys. Rev. E
75
,
031107
(
2007
).
15.
A.
Ishizaki
and
Y.
Tanimura
,
Chem. Phys.
347
,
185
(
2008
).
16.
A.
Ishizaki
and
G. R.
Fleming
,
J. Chem. Phys.
130
,
234111
(
2009
).
17.
J.
Prior
,
A. W.
Chin
,
S. F.
Huelga
, and
M. B.
Plenio
,
Phys. Rev. Lett.
105
,
050404
(
2010
).
18.
P.
Nalbach
,
J.
Eckel
, and
M.
Thorwart
,
New J. Phys.
12
,
065043
(
2010
).
19.
J. M.
Moix
and
J.
Cao
,
J. Chem. Phys.
139
,
134106
(
2013
).
20.
G.
Tao
and
W. H.
Miller
,
J. Phys. Chem. Lett.
1
,
891
(
2010
).
21.
P.
Huo
and
D. F.
Coker
,
J. Chem. Phys.
133
,
184108
(
2010
).
22.
J.
Moix
,
J.
Wu
,
P.
Huo
,
D.
Coker
, and
J.
Cao
,
J. Phys. Chem. Lett.
2
,
3045
(
2011
).
23.
X.
Chen
,
J.
Cao
, and
R. J.
Silbey
,
J. Chem. Phys.
138
,
224104
(
2013
).
24.
S.
Jang
,
Y.-C.
Cheng
,
D. R.
Reichman
, and
J. D.
Eaves
,
J. Chem. Phys.
129
,
101104
(
2008
).
25.
S.
Jang
,
J. Chem. Phys.
135
,
034105
(
2011
).
26.
D. P. S.
McCutcheon
and
A.
Nazir
,
J. Chem. Phys.
135
,
114501
(
2011
).
27.
A.
Kolli
,
A.
Nazir
, and
A.
Olaya-Castro
,
J. Chem. Phys.
135
,
154112
(
2011
).
28.
H.-T.
Chang
and
Y.-C.
Cheng
,
J. Chem. Phys.
137
,
165103
(
2012
).
29.
V.
Novoderezhkin
,
A.
Marin
, and
R.
van Grondelle
,
Phys. Chem. Chem. Phys.
13
,
17093
(
2011
).
30.
D. I. G.
Bennett
,
K.
Amarnath
, and
G. R.
Fleming
,
J. Am. Chem. Soc.
135
,
9164
(
2013
).
31.
S.
Jang
,
S.
Hoyer
,
G.
Fleming
, and
K. B.
Whaley
,
Phys. Rev. Lett.
113
,
188102
(
2014
).
32.
W. M.
Zhang
,
T.
Meier
,
V. Y.
Chernyak
, and
S.
Mukamel
,
J. Chem. Phys.
108
,
7763
(
1998
).
33.
M.
Yang
and
G. R.
Fleming
,
Chem. Phys.
275
,
355
(
2002
).
34.
V. I.
Novoderezhkin
,
M. A.
Palacios
,
H.
van Amerongen
, and
R.
van Grondelle
,
J. Phys. Chem. B
108
,
10363
(
2004
).
35.
V. I.
Novoderezhkin
and
R.
van Grondelle
,
Phys. Chem. Chem. Phys.
12
,
7352
(
2010
).
36.
G. S.
Engel
,
T. R.
Calhoun
,
E. L.
Read
,
T. K.
Ahn
,
T.
Mancal
,
Y.-C.
Cheng
,
R. E.
Blankenship
, and
G. R.
Fleming
,
Nature
446
,
782
(
2007
).
37.
Y.-H.
Hwang-Fu
,
W.
Chen
, and
Y.-C.
Cheng
,
Chem. Phys.
447
,
46
(
2015
).
38.
Q.
Ai
,
Y.-J.
Fan
,
B.-Y.
Jin
, and
Y.-C.
Cheng
,
New J. Phys.
16
,
053033
(
2014
).
39.
Q.
Ai
,
T.-C.
Yen
,
B.-Y.
Jin
, and
Y.-C.
Cheng
,
J. Phys. Chem. Lett.
4
,
2577
(
2013
).
40.
M.
Topaler
and
N.
Makri
,
Chem. Phys. Lett.
210
,
285
(
1993
).
41.
H. P.
Breuer
and
F.
Petruccione
,
The Theory of Open Quantum Systems
(
Oxford University Press
,
USA
,
2002
).
42.
A.
Suarez
,
R. J.
Silbey
, and
I.
Oppenheim
,
J. Chem. Phys.
97
,
5101
(
1992
).
43.
Y.-C.
Cheng
and
R. J.
Silbey
,
J. Phys. Chem. B
109
,
21399
(
2005
).
44.
H.-T.
Chang
,
P.-P.
Zhang
, and
Y.-C.
Cheng
,
J. Chem. Phys.
139
,
224112
(
2013
).
45.
T.-C.
Yen
and
Y.-C.
Cheng
,
Procedia Chem.
3
,
211
(
2011
).
46.
A.
Gelzinis
,
D.
Abramavicius
, and
L.
Valkunas
,
Phys. Rev. B
84
,
245430
(
2011
).
47.
C. K.
Lee
,
J.
Moix
, and
J.
Cao
,
J. Chem. Phys.
136
,
204120
(
2012
).
48.
J. M.
Moix
,
Y.
Zhao
, and
J.
Cao
,
Phys. Rev. B
85
,
115412
(
2012
).
49.
A. F.
Fidler
,
V. P.
Singh
,
P. D.
Long
,
P. D.
Dahlberg
, and
G. S.
Engel
,
Nat. Commun.
5
,
3286
(
2014
).
50.
P.
Huo
and
D. F.
Coker
,
J. Phys. Chem. Lett.
2
,
825
(
2011
).
51.
H. P.
Breuer
,
Phys. Rev. A
75
,
022103
(
2007
).
You do not currently have access to this content.