The ab-initio density matrix renormalization group (DMRG) is a tool that can be applied to a wide variety of interesting problems in quantum chemistry. Here, we examine the density matrix renormalization group from the vantage point of the quantum chemistry user. What kinds of problems is the DMRG well-suited to? What are the largest systems that can be treated at practical cost? What sort of accuracies can be obtained, and how do we reason about the computational difficulty in different molecules? By examining a diverse benchmark set of molecules: π-electron systems, benchmark main-group and transition metal dimers, and the Mn-oxo-salen and Fe-porphine organometallic compounds, we provide some answers to these questions, and show how the density matrix renormalization group is used in practice.

1.
2.
S. R.
White
,
Phys. Rev. B
48
,
10345
(
1993
).
3.
S. R.
White
and
R. L.
Martin
,
J. Chem. Phys.
110
,
4127
(
1999
).
4.
A. O.
Mitrushenkov
,
G.
Fano
,
F.
Ortolani
,
R.
Linguerri
, and
P.
Palmieri
,
J. Chem. Phys.
115
,
6815
(
2001
).
5.
G. K.-L.
Chan
and
M.
Head-Gordon
,
J. Chem. Phys.
116
,
4462
(
2002
).
6.
Ö.
Legeza
,
J.
Röder
, and
B.
Hess
,
Phys. Rev. B
67
,
125114
(
2003
).
7.
D.
Zgid
and
M.
Nooijen
,
J. Chem. Phys.
128
,
014107
(
2008
).
8.
Y.
Kurashige
and
T.
Yanai
,
J. Chem. Phys.
130
,
234114
(
2009
).
9.
H.-G.
Luo
,
M.-P.
Qin
, and
T.
Xiang
,
Phys. Rev. B
81
,
235129
(
2010
).
10.
S.
Wouters
,
W.
Poelmans
,
P. W.
Ayers
, and
D.
Van Neck
,
Comput. Phys. Commun.
185
,
1501
(
2014
).
11.
K. H.
Marti
and
M.
Reiher
,
Z. Phys. Chem.
224
,
583
(
2010
).
12.
Ö.
Legeza
,
T.
Rohwedder
,
R.
Schneider
, and
S.
Szalay
, “
Tensor Product Approximation (DMRG) and Coupled Cluster Method in Quantum Chemistry
,” in
Many-Electron Approaches in Physics, Chemistry and Mathematics
, edited by
V.
Bach
and
L.
Delle Site
(Springer International Publishing, 2014), pp.
53
76
.
13.
14.
G. K.-L.
Chan
and
D.
Zgid
,
Annu. Rep. Comput. Chem.
5
,
149
(
2009
).
15.
G. K.-L.
Chan
and
S.
Sharma
,
Annu. Rev. Phys. Chem.
62
,
465
(
2011
).
16.
Z.
Shuai
,
J.
Bredas
,
S.
Pati
, and
S.
Ramasesha
,
Proc. SPIE
3145
,
293
(
1997
).
17.
D.
Yaron
,
E.
Moore
,
Z.
Shuai
, and
J.
Bredas
,
J. Chem. Phys.
108
,
7451
(
1998
).
18.
G.
Fano
,
F.
Ortolani
, and
L.
Ziosi
,
J. Chem. Phys.
108
,
9246
(
1998
).
19.
20.
G. K.-L.
Chan
,
J. Chem. Phys.
120
,
3172
(
2004
).
21.
S.
Sharma
and
G. K.-L.
Chan
,
J. Chem. Phys.
136
,
124121
(
2012
).
22.
S.
Wouters
,
P. A.
Limacher
,
D.
Van Neck
, and
P. W.
Ayers
,
J. Chem. Phys.
136
,
134110
(
2012
).
23.
S.
Sharma
, preprint arXiv:1408.5868 (
2014
).
24.
Ö.
Legeza
and
J.
Sólyom
,
Phys. Rev. B
68
,
195116
(
2003
).
25.
G.
Barcza
,
Ö.
Legeza
,
K. H.
Marti
, and
M.
Reiher
,
Phys. Rev. A
83
,
012508
(
2011
).
26.
J.
Rissler
,
R. M.
Noack
, and
S. R.
White
,
Chem. Phys.
323
,
519
(
2006
).
27.
D.
Ghosh
,
J.
Hachmann
,
T.
Yanai
, and
G. K.-L.
Chan
,
J. Chem. Phys.
128
,
144117
(
2008
).
28.
D.
Zgid
and
M.
Nooijen
,
J. Chem. Phys.
128
,
144116
(
2008
).
29.
D.
Zgid
and
M.
Nooijen
,
J. Chem. Phys.
128
,
144115
(
2008
).
30.
G.
Moritz
and
M.
Reiher
,
J. Chem. Phys.
124
,
034103
(
2006
).
31.
G.
Moritz
and
M.
Reiher
,
J. Chem. Phys.
126
,
244109
(
2007
).
32.
S. R.
White
,
Phys. Rev. B
72
,
180403
(
2005
).
33.
Ö.
Legeza
and
G.
Fáth
,
Phys. Rev. B
53
,
14349
(
1996
).
34.
G. K.-L.
Chan
and
M.
Head-Gordon
,
J. Chem. Phys.
118
,
8551
(
2003
).
35.
J. J.
Dorando
,
J.
Hachmann
, and
G. K.-L.
Chan
,
J. Chem. Phys.
130
,
184111
(
2009
).
36.
N.
Nakatani
,
S.
Wouters
,
D.
Van Neck
, and
G. K.-L.
Chan
,
J. Chem. Phys.
140
,
024108
(
2014
).
37.
Y.
Kurashige
and
T.
Yanai
,
J. Chem. Phys.
135
,
094104
(
2011
).
38.
T.
Yanai
,
Y.
Kurashige
,
E.
Neuscamman
, and
G. K.-L.
Chan
,
J. Chem. Phys.
132
,
024105
(
2010
).
39.
M.
Saitow
,
Y.
Kurashige
, and
T.
Yanai
,
J. Chem. Phys.
139
,
044118
(
2013
).
40.
S.
Knecht
,
Ö.
Legeza
, and
M.
Reiher
,
J. Chem. Phys.
140
,
041101
(
2014
).
41.
G. K.-L.
Chan
,
M.
Kállay
, and
J.
Gauss
,
J. Chem. Phys.
121
,
6110
(
2004
).
42.
S.
Sharma
,
T.
Yanai
,
G. H.
Booth
,
C. J.
Umrigar
, and
G. K.-L.
Chan
,
J. Chem. Phys.
140
,
104112
(
2014
).
43.
T.
Nishino
and
K.
Okunishi
,
J. Phys. Soc. Jpn.
64
,
4084
(
1995
).
44.
S.
Rommer
and
S.
Östlund
,
Phys. Rev. B
55
,
2164
(
1997
).
45.
J.
Dukelsky
,
M.
Martin-Delgado
,
T.
Nishino
, and
G.
Sierra
,
Europhys. Lett.
43
,
457
(
1998
).
46.
U.
Schollwöck
,
Ann. Phys.
326
,
96
(
2011
).
47.
K. H.
Marti
,
I. M.
Ondík
,
G.
Moritz
, and
M.
Reiher
,
J. Chem. Phys.
128
,
014104
(
2008
).
48.
E.
Neuscamman
,
T.
Yanai
, and
G. K.-L.
Chan
,
J. Chem. Phys.
132
,
024106
(
2010
).
49.
W.
Mizukami
,
Y.
Kurashige
, and
T.
Yanai
,
J. Chem. Theory Comput.
9
,
401
(
2013
).
50.
F.
Liu
,
Y.
Kurashige
,
T.
Yanai
, and
K.
Morokuma
,
J. Chem. Theory Comput.
9
,
4462
(
2013
).
51.
S.
Wouters
,
T.
Bogaerts
,
P.
Van Der Voort
,
V.
Van Speybroeck
, and
D.
Van Neck
,
J. Chem. Phys.
140
,
241103
(
2014
).
52.
Y.
Kurashige
,
G. K.-L.
Chan
, and
T.
Yanai
,
Nat. Chem.
5
,
660
(
2013
).
53.
S.
Sharma
,
K.
Sivalingam
,
F.
Neese
, and
G. K.-L.
Chan
,
Nat. Chem.
6
,
927
(
2014
).
54.
J.
Hachmann
,
W.
Cardoen
, and
G. K.-L.
Chan
,
J. Chem. Phys.
125
,
144101
(
2006
).
55.
J.
Hachmann
,
J. J.
Dorando
,
M.
Avilés
, and
G. K.-L.
Chan
,
J. Chem. Phys.
127
,
134309
(
2007
).
56.
E.
Fertitta
,
B.
Paulus
,
G.
Barcza
, and
Ö.
Legeza
,
Phys. Rev. B
90
,
245129
(
2014
).
57.
K.
Boguslawski
,
P.
Tecmer
,
Ö.
Legeza
, and
M.
Reiher
,
J. Phys. Chem. Lett.
3
,
3129
(
2012
).
58.
K.
Boguslawski
,
P.
Tecmer
,
G.
Barcza
,
Ö.
Legeza
, and
M.
Reiher
,
J. Chem. Theory Comput.
9
,
2959
(
2013
).
59.
M.
Mottet
,
P.
Tecmer
,
K.
Boguslawski
,
Ö.
Legeza
, and
M.
Reiher
,
Phys. Chem. Chem. Phys.
16
,
8872
(
2014
).
60.
P.
Tecmer
,
K.
Boguslawski
,
Ö.
Legeza
, and
M.
Reiher
,
Phys. Chem. Chem. Phys.
16
,
719
(
2014
).
61.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
,
M.
Schütz
,
P.
Celani
,
T.
Korona
,
R.
Lindh
,
A.
Mitrushenkov
,
G.
Rauhut
 et al., molpro, version 2012.1, a package of ab initio programs 2012, see http://www.molpro.net.
62.
F.
Neese
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
73
(
2012
).
63.
Y.
Shao
,
Z.
Gan
,
E.
Epifanovsky
,
A. T.
Gilbert
,
M.
Wormit
,
J.
Kussmann
,
A. W.
Lange
,
A.
Behn
,
J.
Deng
,
X.
Feng
 et al.,
Mol. Phys.
113
,
184
(
2015
).
65.
K.
Wilson
,
Rev. Mod. Phys.
47
,
773
(
1975
).
66.
G. K.-L.
Chan
,
Phys. Chem. Chem. Phys.
10
,
3454
(
2008
).
67.
J. M.
Kinder
,
C. C.
Ralph
, and
G. K.-L.
Chan
, “
Analytic Time Evolution, Random Phase Approximation, and Green Functions for Matrix Product States
,” in
Quantum Information and Computation for Chemistry,Advances in Chemical Physics Vol. 154
, edited by
S.
Kais
(
John Wiley & Sons, Inc.
,
Hoboken, NJ
,
2014
), pp.
179
192
.
68.
N.
Nakatani
and
G. K.-L.
Chan
,
J. Chem. Phys.
138
,
134113
(
2013
).
69.
S.
Wouters
,
B.
Verstichel
,
D.
Van Neck
, and
G. K.-L.
Chan
,
Phys. Rev. B
90
,
045104
(
2014
).
70.
E. R.
Davidson
,
J. Comput. Phys.
17
,
87
(
1975
).
71.
M.
Fiedler
,
Czech. Math. J.
23
,
298
(
1973
), available at http://dml.cz/dmlcz/101356.
72.
M.
Fiedler
,
Czech. Math. J.
25
,
607
(
1975
), available at http://dml.cz/dmlcz/101356.
73.
M.
Juvan
and
B.
Mohar
,
Discrete Appl. Math.
36
,
153
(
1992
).
74.
M. W.
Newman
, Ph.D. thesis,
University of Manitoba
,
2000
.
75.
T.
Biyikoglu
,
J.
Leydold
, and
P. F.
Stadler
,
Laplacian Eigenvectors of Graphs: Perron–Frobenius and Faber–Krahn Type Theorems
,
Lecture Notes in Mathematics
(
Springer
,
2007
).
76.
D. E.
Goldberg
,
Genetic Algorithms in Search, Optimization, and Machine Learning
(
Addison-Wesley Professional
,
1989
).
77.
G.
Moritz
,
B. A.
Hess
, and
M.
Reiher
,
J. Chem. Phys.
122
,
024107
(
2005
).
78.
L.
Davis
, “
Applying adaptive algorithms to epistatic domains
,” in
IJCAI’85 Proceedings of the 9th International Joint Conference on Artificial Intelligence
(
Morgan Kaufmann Publishers Inc.
,
San Francisco
,
1985
), Vol.
1
, pp.
162
164
, available at http://dl.acm.org/citation.cfm?id=1625135.1625164.
79.
L.
Davis
, “
Job Shop Scheduling with Genetic Algorithm
,” in
Proceedings of the First International Conference on Genetic Algorithms and Their Applications
, edited by
J.
Grefenstette
(
Psychology Press, Taylor & Francis Group
,
2014
), pp.
136
140
.
80.
G. K.-L.
Chan
and
P.
Ayers
,
J. Stat. Phys.
109
,
289
(
2002
).
81.
W. J.
Hehre
,
J. Chem. Phys.
51
,
2657
(
1969
).
82.
J.
Pipek
and
P. G.
Mezey
,
J. Chem. Phys.
90
,
4916
(
1989
).
83.
E.
Stoudenmire
and
S. R.
White
,
Annu. Rev. Condens. Matter Phys.
3
,
111
(
2012
).
84.
G. H.
Booth
,
D.
Cleland
,
A. J. W.
Thom
, and
A.
Alavi
,
J. Chem. Phys.
135
,
084104
(
2011
).
85.
B. O.
Roos
,
Collect. Czech. Chem. Commun.
68
,
265
(
2003
).
86.
A.
Schäfer
,
H.
Horn
, and
R.
Ahlrichs
,
J. Chem. Phys.
97
,
2571
(
1992
).
87.
S. R.
White
, private communication.
88.
C.
Daday
,
S.
Smart
,
G. H.
Booth
,
A.
Alavi
, and
C.
Filippi
,
J. Chem. Theory Comput.
8
,
4441
(
2012
).
89.
M. A.
Watson
and
G. K.-L.
Chan
,
J. Chem. Theory Comput.
8
,
4013
(
2012
).
90.
J.
Ivanic
,
J. Chem. Phys.
119
,
9377
(
2003
).
91.
J.
Ivanic
,
J. R.
Collins
, and
S. K.
Burt
,
J. Phys. Chem. A
108
,
2314
(
2004
).
92.
B. O.
Roos
,
V.
Veryazov
,
J.
Conradie
,
P. R.
Taylor
, and
A.
Ghosh
,
J. Phys. Chem. B
112
,
14099
(
2008
).
93.
S.
Vancoillie
,
H.
Zhao
,
V. T.
Tran
,
M. F. A.
Hendrickx
, and
K.
Pierloot
,
J. Chem. Theory Comput.
7
,
3961
(
2011
).
94.
K.
Boguslawski
,
K. H.
Marti
, and
M.
Reiher
,
J. Chem. Phys.
134
,
224101
(
2011
).
95.
W.
Zhang
,
J. L.
Loebach
,
S. R.
Wilson
, and
E. N.
Jacobsen
,
J. Am. Chem. Soc.
112
,
2801
(
1990
).
96.
E. N.
Jacobsen
,
W.
Zhang
,
A. R.
Muci
,
J. R.
Ecker
, and
L.
Deng
,
J. Am. Chem. Soc.
113
,
7063
(
1991
).
97.
Y. G.
Abashkin
,
J. R.
Collins
, and
S. K.
Burt
,
Inorg. Chem.
40
,
4040
(
2001
).
98.
M. M.
Francl
,
J. Chem. Phys.
77
,
3654
(
1982
).
99.
V. A.
Rassolov
,
J. A.
Pople
,
M. A.
Ratner
, and
T. L.
Windus
,
J. Chem. Phys.
109
,
1223
(
1998
).
100.
H.
Chen
,
W.
Lai
, and
S.
Shaik
,
J. Phys. Chem. B
115
,
1727
(
2011
).
101.
M.
Swart
,
Int. J. Quantum Chem.
113
,
2
(
2013
).
102.
A. R.
Groenhof
,
M.
Swart
,
A. W.
Ehlers
, and
K.
Lammertsma
,
J. Phys. Chem. A
109
,
3411
(
2005
).
103.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
104.
N. B.
Balabanov
and
K. A.
Peterson
,
J. Chem. Phys.
123
,
64107
(
2005
).
105.
N. B.
Balabanov
and
K. A.
Peterson
,
J. Chem. Phys.
125
,
074110
(
2006
).
106.
P.-O.
Widmark
,
P.-Å.
Malmqvist
, and
B. O.
Roos
,
Theor. Chim. Acta.
77
,
291
(
1990
).
You do not currently have access to this content.