We numerically study different forms of nanoscale gaseous domains on a model for rough surfaces. Our calculations based on the constrained lattice density functional theory show that the inter-connectivity of pores surrounded by neighboring nanoposts, which model the surface roughness, leads to the formation of stable microscopic Cassie states. We investigate the dependence of the stability of the micro-Cassie states on substrate roughness, fluid-solid interaction, and chemical potential and then address the differences between the origin of the micro-Cassie states and that of surface nanobubbles within similar models. Finally, we show that the micro-Cassie states share some features with experimentally observed micropancakes at solid-water interfaces.

1.
S.-T.
Lou
,
Z.-Q.
Ouyang
,
Y.
Zhang
,
X.-J.
Li
,
J.
Hu
,
M.-Q.
Li
, and
F.-J.
Yang
,
J. Vac. Sci. Technol., B
18
,
2573
(
2000
).
2.
R.
Steitz
,
T.
Gutberlet
,
T.
Hauss
,
B.
Klosgen
,
R.
Krastev
,
S.
Schemmel
,
A. C.
Simonsen
, and
G. H.
Findenegg
,
Langmuir
19
,
2409
(
2003
).
3.
K.
Ohgaki
,
N. Q.
Khanh
,
Y.
Joden
,
A.
Tsuji
, and
T.
Nakagawa
,
Chem. Eng. Sci.
65
,
1296
(
2010
).
4.
R.
Becker
and
W.
Döring
,
Ann. Phys.
416
,
719
(
1935
).
5.
D. W.
Oxtoby
and
R.
Evans
,
J. Chem. Phys.
89
,
7521
(
1988
).
6.
X.
Zeng
and
D. W.
Oxtoby
,
J. Chem. Phys.
94
,
4472
(
1991
).
7.
M. P.
Brenner
and
D.
Lohse
,
Phys. Rev. Lett.
101
,
214505
(
2008
).
8.
J. R. T.
Seddon
,
H. J. W.
Zandvliet
, and
D.
Lohse
,
Phys. Rev. Lett.
107
,
116101
(
2011
).
9.
E.
Dietrich
,
H. J. W.
Zandvliet
,
D.
Lohse
, and
J. R. T.
Seddon
,
J. Phys.: Condens. Matter
25
,
184009
(
2013
).
10.
F.
Caupin
and
E.
Herbert
,
C. R. Phys.
7
,
1000
(
2006
).
11.
X. H.
Zhang
,
M. H.
Uddin
,
H. J.
Yang
,
G.
Toikka
,
W.
Ducker
, and
N.
Maeda
,
Langmuir
28
,
10471
(
2012
).
12.
W. A.
Ducker
,
Langmuir
25
,
8907
(
2009
).
13.
H.
Peng
,
G. R.
Birkett
, and
A. V.
Nguyen
,
Langmuir
29
,
15266
(
2013
).
14.
Y. W.
Liu
,
J. J.
Wang
,
X. R.
Zhang
, and
W. C.
Wang
,
J. Chem. Phys.
140
,
054705
(
2014
).
15.
Y. W.
Liu
and
X. R.
Zhang
,
J. Chem. Phys.
138
,
014706
(
2013
).
16.
Y. W.
Liu
and
X.
Zhang
,
J. Chem. Phys.
141
,
134702
(
2014
).
17.
D.
Lohse
and
X. H.
Zhang
,
Phys. Rev. E
91
,
031003(R)
(
2015
).
18.
J. H.
Weijs
and
D.
Lohse
,
Phys. Rev. Lett.
110
,
054501
(
2013
).
19.
X. H.
Zhang
,
X. D.
Zhang
,
J. L.
Sun
,
Z. X.
Zhang
,
G.
Li
,
H. P.
Fang
,
X. D.
Xiao
,
X. C.
Zeng
, and
J.
Hu
,
Langmuir
23
,
1778
(
2007
).
20.
X. H.
Zhang
,
N.
Maeda
, and
J.
Hu
,
J. Phys. Chem. B
112
,
13671
(
2008
).
21.
X.
Zhang
and
D.
Lohse
,
Biomicrofluidics
8
,
041301
(
2014
).
22.
Y. H.
Lu
,
C. W.
Yang
, and
I. S.
Hwang
,
Appl. Surf. Sci.
304
,
56
(
2014
).
23.
H.
An
,
G.
Liu
, and
V. S.
Craig
, “
Wetting of nanophases: Nanobubbles, nanodroplets and micropancakes on hydrophobic surfaces
,”
Adv. Colloid Interface Sci.
(in press).
24.
H.
Peng
,
M. A.
Hampton
, and
A. V.
Nguyen
,
Langmuir
29
,
6123
(
2013
).
25.
Y. H.
Lu
,
C. W.
Yang
, and
I. S.
Hwang
,
Langmuir
28
,
12691
(
2012
).
26.
J. R. T.
Seddon
and
D.
Lohse
,
J. Phys.: Condens. Matter
23
,
133001
(
2011
).
27.
X.
Zhang
and
N.
Maeda
,
J. Phys. Chem. C
115
,
736
(
2010
).
28.
J. R.
Seddon
,
O.
Bliznyuk
,
E. S.
Kooij
,
B.
Poelsema
,
H. J.
Zandvliet
, and
D.
Lohse
,
Langmuir
26
,
9640
(
2010
).
29.
L. J.
Zhang
,
X. H.
Zhang
,
C. H.
Fan
,
Y.
Zhang
, and
J.
Hu
,
Langmuir
25
,
8860
(
2009
).
30.
C. L.
Wang
,
Z. X.
Li
,
J. Y.
Li
,
P.
Xiu
,
J.
Hu
, and
H. P.
Fang
,
Chin. Phys. B
17
,
2646
(
2008
).
31.
Z.
Li
,
X.
Zhang
,
L.
Zhang
,
X.
Zeng
,
J.
Hu
, and
H.
Fang
,
J. Phys. Chem. B
111
,
9325
(
2007
).
32.
Y. M.
Men
,
X. R.
Zhang
, and
W. C.
Wang
,
J. Chem. Phys.
131
,
184702
(
2009
).
33.
V.
Talanquer
and
D. W.
Oxtoby
,
J. Chem. Phys.
100
,
5190
(
1994
).
34.
A.
Haymet
and
D. W.
Oxtoby
,
J. Chem. Phys.
74
,
2559
(
1981
).
35.
Y. M.
Men
,
Q. Z.
Yan
,
G. F.
Jiang
,
X. R.
Zhang
, and
W. C.
Wang
,
Phys. Rev. E
79
,
051602
(
2009
).
36.
Y. M.
Men
and
X. R.
Zhang
,
J. Chem. Phys.
136
,
124704
(
2012
).
37.
S.
Auer
and
D.
Frenkel
,
Nature
409
,
1020
(
2001
).
38.
Y. M.
Men
,
X. R.
Zhang
, and
W. C.
Wang
,
J. Chem. Phys.
134
,
124704
(
2011
).
39.
D.
Zhou
,
M.
Zeng
,
J. G.
Mi
, and
C. L.
Zhong
,
J. Phys. Chem. B
115
,
57
(
2011
).
40.
Z. D.
Li
and
J. H.
Wu
,
Ind. Eng. Chem. Res.
47
,
4988
(
2008
).
41.
Q. M.
Guo
,
Y. W.
Liu
,
G. F.
Jiang
, and
X. R.
Zhang
,
J. Chem. Phys.
138
,
214701
(
2013
).
42.
Y. W.
Liu
,
Y. M.
Men
, and
X. R.
Zhang
,
J. Chem. Phys.
135
,
184701
(
2011
).
43.
Y. W.
Liu
,
Y. M.
Men
, and
X. R.
Zhang
,
J. Chem. Phys.
137
,
104701
(
2012
).
44.
Y. W.
Liu
and
X. R.
Zhang
,
Phys. Rev. E
88
,
012404
(
2013
).
45.
E.
Bormashenko
,
R.
Pogreb
,
G.
Whyman
, and
M.
Erlich
,
Langmuir
23
,
6501
(
2007
).
46.
T.
Koishi
,
K.
Yasuoka
,
S.
Fujikawa
,
T.
Ebisuzaki
, and
X. C.
Zeng
,
Proc. Natl. Acad. Sci. U. S. A.
106
,
8435
(
2009
).
47.
P.
Tsai
,
R. G. H.
Lammertink
,
M.
Wessling
, and
D.
Lohse
,
Phys. Rev. Lett.
104
,
116102
(
2010
).
48.
X. H.
Zhang
,
D. Y. C.
Chan
,
D. Y.
Wang
, and
N.
Maeda
,
Langmuir
29
,
1017
(
2013
).
49.
A.
Checco
,
P.
Guenoun
, and
J.
Daillant
,
Phys. Rev. Lett.
91
,
186101
(
2003
).
50.
C.
Xu
,
S.
Peng
,
G. G.
Qiao
,
V.
Gutowski
,
D.
Lohse
, and
X.
Zhang
,
Soft Matter
10
,
7857
(
2014
).
You do not currently have access to this content.