We present an improved preconditioning scheme for electronic structure calculations based on the orbital transformation method. First, a preconditioner is developed which includes information from the full Kohn-Sham matrix but avoids computationally demanding diagonalisation steps in its construction. This reduces the computational cost of its construction, eliminating a bottleneck in large scale simulations, while maintaining rapid convergence. In addition, a modified form of Hotelling’s iterative inversion is introduced to replace the exact inversion of the preconditioner matrix. This method is highly effective during molecular dynamics (MD), as the solution obtained in earlier MD steps is a suitable initial guess. Filtering small elements during sparse matrix multiplication leads to linear scaling inversion, while retaining robustness, already for relatively small systems. For system sizes ranging from a few hundred to a few thousand atoms, which are typical for many practical applications, the improvements to the algorithm lead to a 2-5 fold speedup per MD step.

1.
P.
Pulay
,
J. Comput. Chem.
3
,
556
(
1982
).
2.
A.
Marek
,
V.
Blum
,
R.
Johanni
,
V.
Havu
,
B.
Lang
,
T.
Auckenthaler
,
A.
Heinecke
,
H.-J.
Bungartz
, and
H.
Lederer
,
J. Phys.: Condens. Matter
26
,
213201
(
2014
).
3.
A.
Haidar
,
R.
Solcà
,
M.
Gates
,
S.
Tomov
,
T.
Schulthess
, and
J.
Dongarra
,
Supercomputing
(
Springer
,
2013
), pp.
67
80
.
4.
A. M.
Niklasson
,
C.
Tymczak
, and
M.
Challacombe
,
J. Chem. Phys.
118
,
8611
(
2003
).
5.
X.-P.
Li
,
R.
Nunes
, and
D.
Vanderbilt
,
Phys. Rev. B
47
,
10891
(
1993
).
6.
J. M.
Millam
and
G. E.
Scuseria
,
J. Chem. Phys.
106
,
5569
(
1997
).
7.
T.
Helgaker
,
H.
Larsen
,
J.
Olsen
, and
P.
Jørgensen
,
Chem. Phys. Lett.
327
,
397
(
2000
).
8.
Y.
Shao
,
C.
Saravanan
,
M.
Head-Gordon
, and
C. A.
White
,
J. Chem. Phys.
118
,
6144
(
2003
).
9.
J.
VandeVondele
,
M.
Krack
,
F.
Mohamed
,
M.
Parrinello
,
T.
Chassaing
, and
J.
Hutter
,
Comput. Phys. Commun.
167
,
103
(
2005
).
10.
J.
Hutter
,
M.
Iannuzzi
,
F.
Schiffmann
, and
J.
VandeVondele
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
,
15
(
2014
).
11.
J.
VandeVondele
and
J.
Hutter
,
J. Chem. Phys.
118
,
4365
(
2003
).
12.
K.
Baarman
and
J.
VandeVondele
,
J. Chem. Phys.
134
,
244104
(
2011
).
13.
V.
Weber
,
J.
VandeVondele
,
J.
Hutter
, and
A. M.
Niklasson
,
J. Chem. Phys.
128
,
084113
(
2008
).
14.
G. H.
Golub
and
Q.
Ye
,
SIAM J. Sci. Comput.
24
,
312
(
2002
).
15.
E.
Chow
and
Y.
Saad
,
SIAM J. Sci. Comput.
19
,
995
(
1998
).
16.
H.
Hotelling
,
Ann. Math. Stat.
14
,
1
(
1943
).
17.
V.
Pan
and
J.
Reif
, in
Proceedings of the Seventeenth Annual ACM Symposium on Theory of Computing
(
ACM
,
1985
), pp.
143
152
.
18.
N. J.
Higham
,
Functions of Matrices: Theory and Computation
(
SIAM
,
2008
).
19.
U.
Borštnik
,
J.
VandeVondele
,
V.
Weber
, and
J.
Hutter
,
Parallel Comput.
40
,
47
(
2014
).
20.
O.
Schutt
,
P.
Messmer
,
J.
Hutter
, and
J.
VandeVondele
, “
Gpu accelerated sparse matrix matrix multiplication for linear scaling density functional theory
,” in
Electronic Structure Calculations on Graphics Processing Units
(John Wiley and Sons, 2014) (in press).
21.
S.
Goedecker
,
M.
Teter
, and
J.
Hutter
,
Phys. Rev. B
54
,
1703
(
1996
).
22.
J.
VandeVondele
and
J.
Hutter
,
J. Chem. Phys.
127
,
114105
(
2007
).
23.
J.
VandeVondele
,
U.
Borštnik
, and
J.
Hutter
,
J. Chem. Theory Comput.
8
,
3565
(
2012
).
24.
V.
Weber
and
J.
Hutter
,
J. Chem. Phys.
128
,
064107
(
2008
).
You do not currently have access to this content.