We present a formulation of molecular response theory for the description of a quantum mechanical molecular system in the presence of a weak, monochromatic, linearly polarized electromagnetic field without introducing truncated multipolar expansions. The presentation focuses on a description of linear absorption by adopting the energy-loss approach in combination with the complex polarization propagator formulation of response theory. Going beyond the electric-dipole approximation is essential whenever studying electric-dipole-forbidden transitions, and in general, non-dipolar effects become increasingly important when addressing spectroscopies involving higher-energy photons. These two aspects are examined by our study of the near K-edge X-ray absorption fine structure of the alkaline earth metals (Mg, Ca, Sr, Ba, and Ra) as well as the trans-polyenes. In following the series of alkaline earth metals, the sizes of non-dipolar effects are probed with respect to increasing photon energies and a detailed assessment of results is made in terms of studying the pertinent transition electron densities and in particular their spatial extension in comparison with the photon wavelength. Along the series of trans-polyenes, the sizes of non-dipolar effects are probed for X-ray spectroscopies on organic molecules with respect to the spatial extension of the chromophore.

1.
Encyclopedia of Spectroscopy and Spectrometry
, edited by
J. C.
Lindon
,
G. E.
Tranter
, and
J. L.
Holmes
(
Academic Press
,
San Diego
,
2010
).
2.
S.
Mukamel
, in
Principles of Nonlinear Optical Spectroscopy
(
Oxford University Press
,
New York
,
1995
), Vol.
29
.
3.
L. D.
Barron
,
Molecular Light Scattering and Optical Activity
(
Cambridge University Press
,
2004
).
4.
R. W.
Boyd
,
Nonlinear Optics
(
Academic Press
,
2003
).
5.
P.
Norman
, “
A perspective on nonresonant and resonant electronic response theory for time-dependent molecular properties
,”
Phys. Chem. Chem. Phys.
13
,
20519
20535
(
2011
).
6.
K.
Schwarzschild
, “
Zur elektrodynamik. I. Zwei formen des princips der action in der elektronentheorie
,”
Gött. Nachr., Math.-Phys. Kl.
1903
,
126
131
.
7.
M.
Gell-Mann
, “
The interpretation of the new particles as displaced charge multiplets
,”
Il Nuovo Cimento
4
,
848
866
(
1956
).
8.
S. D.
George
,
T.
Petrenko
, and
F.
Neese
, “
Time-dependent density functional calculations of ligand K-edge X-ray absorption spectra
,”
Inorg. Chim. Acta
361
,
965
972
(
2008
).
9.
N.
Lee
,
T.
Petrenko
,
U.
Bergmann
,
F.
Neese
, and
S.
DeBeer
, “
Probing valence orbital composition with iron Kβ X-ray emission spectroscopy
,”
J. Am. Chem. Soc.
132
,
9715
9727
(
2010
).
10.
S.
Bernadotte
,
A. J.
Atkins
, and
C. R.
Jacob
, “
Origin-independent calculation of quadrupole intensities in X-ray spectroscopy
,”
J. Chem. Phys.
137
,
204106
(
2012
).
11.
D. P.
Craig
and
T.
Thirunamachandran
,
Molecular Quantum Electrodynamics: An Introduction to Radiation–Molecule Interactions
(
Courier Dover Publications
,
1998
).
12.
D. W.
Lindle
and
O.
Hemmers
, “
Breakdown of the dipole approximation in soft-X-ray photoemission
,”
J. Electron Spectrosc. Relat. Phenom.
100
,
297
311
(
1999
).
13.
O.
Hemmers
,
R.
Guillemin
, and
D. W.
Lindle
, “
Nondipole effects in soft X-ray photoemission
,”
Radiat. Phys. Chem.
70
,
123
147
(
2004
).
14.
P. V.
Demekhin
, “
On the breakdown of the electric dipole approximation for hard X-ray photoionization cross sections
,”
J. Phys. B: At., Mol. Opt. Phys.
47
,
025602
(
2014
).
15.
G. M.
Seabra
,
I. G.
Kaplan
, and
J. V.
Ortiz
, “
Molecular photoionization cross sections in electron propagator theory: Angular distributions beyond the dipole approximation
,”
J. Chem. Phys.
123
,
114105
(
2005
).
16.
J.
Stöhr
, in
NEXAFS Spectroscopy
(
Springer
,
1992
), Vol.
25
.
17.
T.
Glaser
,
B.
Hedman
,
K. O.
Hodgson
, and
E. I.
Solomon
, “
Ligand K-edge X-ray absorption spectroscopy: A direct probe of ligand–metal covalency
,”
Acc. Chem. Res.
33
,
859
868
(
2000
), pMID: 11123885.
18.
E. I.
Solomon
,
B.
Hedman
,
K. O.
Hodgson
,
A.
Dey
, and
R. K.
Szilagyi
, “
Ligand K-edge X-ray absorption spectroscopy: Covalency of ligand–metal bonds
,”
Coord. Chem. Rev.
249
,
97
129
(
2005
).
19.
F.
Neese
,
B.
Hedman
,
K. O.
Hodgson
, and
E. I.
Solomon
, “
Relationship between the dipole strength of ligand pre-edge transitions and metal–ligand covalency
,”
Inorg. Chem.
38
,
4854
4860
(
1999
).
20.
L. S.
Kau
,
D. J.
Spira-Solomon
,
J. E.
Penner-Hahn
,
K. O.
Hodgson
, and
E. I.
Solomon
, “
X-ray absorption edge determination of the oxidation state and coordination number of copper. Application to the type 3 site in rhus vernicifera laccase and its reaction with oxygen
,”
J. Am. Chem. Soc.
109
,
6433
6442
(
1987
).
21.
F. W.
Lytle
,
R. B.
Greegor
, and
A. J.
Panson
, “
Discussion of X-ray-absorption near-edge structure: Application to Cu in the high-Tc superconductors La1.8Sr0.2CuO4 and Y Ba2Cu3O7
,”
Phys. Rev. B
37
,
1550
1562
(
1988
).
22.
E. M. C.
Alayon
,
M.
Nachtegaal
,
E.
Kleymenov
, and
J. A.
van Bokhoven
, “
Determination of the electronic and geometric structure of Cu sites during methane conversion over Cu-MOR with X-ray absorption spectroscopy
,”
Microporous Mesoporous Mater.
166
,
131
136
(
2013
).
23.
T.
Ressler
,
J.
Wienold
,
R. E.
Jentoft
, and
T.
Neisius
, “
Bulk structural investigation of the reduction of MoO3 with propene and the oxidation of MoO2 with oxygen
,”
J. Catal.
210
,
67
83
(
2002
).
24.
J. J.
Rehr
and
R. C.
Albers
, “
Theoretical approaches to X-ray absorption fine structure
,”
Rev. Mod. Phys.
72
,
621
654
(
2000
).
25.
V. K.
Yachandra
, “
X-ray absorption spectroscopy and applications in structural biology
,”
Methods Enzymol.
246
,
638
675
(
1995
).
26.
R. K.
Hocking
,
S.
Debeer George
,
Z.
Gross
,
F. A.
Walker
,
K. O.
Hodgson
,
B.
Hedman
, and
E. I.
Solomon
, “
Fe L-and K-edge XAS of low-spin ferric corrole: Bonding and reactivity relative to low-spin ferric porphyrin
,”
Inorg. Chem.
48
,
1678
1688
(
2009
).
27.
S.
DeBeer George
,
T.
Petrenko
, and
F.
Neese
, “
Prediction of iron K-edge absorption spectra using time-dependent density functional theory
,”
J. Phys. Chem. A
112
,
12936
12943
(
2008
).
28.
G.
Hähner
, “
Near edge X-ray absorption fine structure spectroscopy as a tool to probe electronic and structural properties of thin organic films and liquids
,”
Chem. Soc. Rev.
35
,
1244
1255
(
2006
).
29.
F.
Bournel
,
C.
Laffon
,
P.
Parent
, and
G.
Tourillon
, “
Adsorption of some substituted ethylene molecules on Pt (111) at 95 K part 1: NEXAFS, XPS and UPS studies
,”
Surf. Sci.
350
,
60
78
(
1996
).
30.
C.
Vahlberg
,
M.
Linares
,
S.
Villaume
,
P.
Norman
, and
K.
Uvdal
, “
Noradrenaline and a thiol analogue on gold surfaces: An infrared reflection-absorption spectroscopy, X-ray photoelectron spectroscopy, and near-edge X-ray absorption fine structure spectroscopy study
,”
J. Phys. Chem. C
115
,
165
175
(
2011
).
31.
C.
Vahlberg
,
M.
Linares
,
P.
Norman
, and
K.
Uvdal
, “
Phenylboronic ester- and phenylboronic acid-terminated alkanethiols on gold surfaces
,”
J. Phys. Chem. C
116
,
796
806
(
2012
).
32.
R.
Vedrinskii
,
V.
Kraizman
,
A.
Novakovich
,
P. V.
Demekhin
,
S.
Urazhdin
,
B.
Ravel
, and
E.
Stern
, “
Pre-edge fine structure (PEFS) of the K-XAS for the 3d atoms in compounds: A new tool for quantitative atomic structure determination
,”
J. Phys. IV
7
,
C2-107
(
1997
).
33.
R. V.
Vedrinskii
,
V. L.
Kraizman
,
A. A.
Novakovich
,
P. V.
Demekhin
, and
S. V.
Urazhdin
, “
Pre-edge fine structure of the 3d atom K X-ray absorption spectra and quantitative atomic structure determinations for ferroelectric perovskite structure crystals
,”
J. Phys.: Condens. Matter
10
,
9561
(
1998
).
34.
B. M.
Messer
,
C. D.
Cappa
,
J. D.
Smith
,
W. S.
Drisdell
,
C. P.
Schwartz
,
R. C.
Cohen
, and
R. J.
Saykally
, “
Local hydration environments of amino acids and dipeptides studied by X-ray spectroscopy of liquid microjets
,”
J. Phys. Chem. B
109
,
21640
21646
(
2005
).
35.
B. M.
Messer
,
C. D.
Cappa
,
J. D.
Smith
,
K. R.
Wilson
,
M. K.
Gilles
,
R. C.
Cohen
, and
R. J.
Saykally
, “
pH dependence of the electronic structure of glycine
,”
J. Phys. Chem. B
109
,
5375
5382
(
2005
).
36.
H.
Mahr
, “
Two-photon absorption spectroscopy
,” in
Quantum Electronics - Nonlinear Optics, Part A
, edited by
H.
Rabin
and
C. L.
Tang
(
Academic Press
,
New York
,
1975
), Vol.
1
.
37.
P.
Norman
,
D. M.
Bishop
,
H. J. Aa.
Jensen
, and
J.
Oddershede
, “
Near-resonant absorption in the time-dependent self-consistent field and multiconfigurational self-consistent field approximations
,”
J. Chem. Phys.
115
,
10323
(
2001
).
38.
P.
Norman
,
D. M.
Bishop
,
H. J. Aa.
Jensen
, and
J.
Oddershede
, “
Nonlinear response theory with relaxation: The first-order hyperpolarizability
,”
J. Chem. Phys.
123
,
194103
(
2005
).
39.
U.
Ekström
and
P.
Norman
, “
X-ray absorption spectra from the resonant-convergent first-order polarization propagator approach
,”
Phys. Rev. A
74
,
042722
(
2006
).
40.
G. C.
Schatz
and
M. A.
Ratner
,
Quantum Mechanics in Chemistry
(
Courier Corporation
,
2002
).
41.
T.
Helgaker
,
S.
Coriani
,
P.
Jørgensen
,
K.
Kristensen
,
J.
Olsen
, and
K.
Ruud
, “
Recent advances in wave function-based methods of molecular-property calculations
,”
Chem. Rev.
112
,
543
631
(
2012
).
42.
D. J.
Griffiths
,
Introduction to Electrodynamics
(
Pearson
,
2013
).
43.
J.
Olsen
and
P.
Jørgensen
, “
Linear and non-linear response functions for an exact state and for an MCSCF state
,”
J. Chem. Phys.
82
,
3235
3264
(
1985
).
44.
V. M.
Agranovich
and
V. L.
Ginzburg
,
Spatial Dispersion in Crystal Optics and the Theory of Excitons
(
Interscience London
,
1966
).
45.
F.
Bechstedt
,
Many-Body Approach to Electronic Excitations
(
Springer
,
2014
).
46.
A. S.
Davydov
,
Quantum Mechanics
, 2nd ed. (
Pergamon
,
Oxford
,
1976
).
47.
R.
Bast
,
J.
Juselius
, and
T.
Saue
, “
4-component relativistic calculation of the magnetically induced current density in the group 15 heteroaromatic compounds
,”
Chem. Phys.
356
,
187
194
(
2009
).
48.
E.
Merzbacher
,
Quantum Mechanics
(
Wiley
,
1970
).
49.
B. H.
Bransden
and
C. J.
Joachain
,
Physics of Atoms and Molecules
, 2nd ed. (
Pearson Education India
,
2003
).
50.
K.
Aidas
,
C.
Angeli
,
K. L.
Bak
,
V.
Bakken
,
R.
Bast
,
L.
Boman
,
O.
Christiansen
,
R.
Cimiraglia
,
S.
Coriani
,
P.
Dahle
,
E. K.
Dalskov
,
U.
Ekström
,
T.
Enevoldsen
,
J. J.
Eriksen
,
P.
Ettenhuber
,
B.
Fernández
,
L.
Ferrighi
,
H.
Fliegl
,
L.
Frediani
,
K.
Hald
,
A.
Halkier
,
C.
Hättig
,
H.
Heiberg
,
T.
Helgaker
,
A. C.
Hennum
,
H.
Hettema
,
E.
Hjertenæs
,
S.
Høst
,
I.-M.
Høyvik
,
M. F.
Iozzi
,
B.
Jansik
,
H. J. A.
Jensen
,
D.
Jonsson
,
P.
Jørgensen
,
J.
Kauczor
,
S.
Kirpekar
,
T.
Kjærgaard
,
W.
Klopper
,
S.
Knecht
,
R.
Kobayashi
,
H.
Koch
,
J.
Kongsted
,
A.
Krapp
,
K.
Kristensen
,
A.
Ligabue
,
O. B.
Lutnæs
,
J. I.
Melo
,
K. V.
Mikkelsen
,
R. H.
Myhre
,
C.
Neiss
,
C. B.
Nielsen
,
P.
Norman
,
J.
Olsen
,
J. M. H.
Olsen
,
A.
Osted
,
M. J.
Packer
,
F.
Pawlowski
,
T. B.
Pedersen
,
P. F.
Provasi
,
S.
Reine
,
Z.
Rinkevicius
,
T. A.
Ruden
,
K.
Ruud
,
V.
Rybkin
,
P.
Salek
,
C. C. M.
Samson
,
A. S.
de Merás
,
T.
Saue
,
S. P. A.
Sauer
,
B.
Schimmelpfennig
,
K.
Sneskov
,
A. H.
Steindal
,
K. O.
Sylvester-Hvid
,
P. R.
Taylor
,
A. M.
Teale
,
E. I.
Tellgren
,
D. P.
Tew
,
A. J.
Thorvaldsen
,
L.
Thøgersen
,
O.
Vahtras
,
M. A.
Watson
,
D. J. D.
Wilson
,
M.
Ziolkowski
, and
H.
Ågren
, “
The Dalton quantum chemistry program system
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
,
269
(
2014
).
51.
Dalton, A Molecular Electronic Structure Program, Release DALTON2013.0, 2013, see http://daltonprogram.org/.
52.
J.
Kauczor
,
P.
Jørgensen
, and
P.
Norman
, “
On the efficiency of algorithms for solving Hartree–Fock and Kohn–Sham response equations
,”
J. Chem. Theory Comput.
7
,
1610
1630
(
2011
).
53.
J.
Kauczor
and
P.
Norman
, “
Efficient calculations of molecular linear response properties for spectral regions
,”
J. Chem. Theory Comput.
10
,
2449
2455
(
2014
).
54.
P.
Sałek
,
O.
Vahtras
,
T.
Helgaker
, and
H.
Ågren
, “
Density-functional theory of linear and nonlinear time-dependent molecular properties
,”
J. Chem. Phys.
117
,
9630
9645
(
2002
).
55.
O.
Christiansen
,
P.
Jørgensen
, and
C.
Hättig
, “
Response functions from Fourier component variational perturbation theory applied to a time-averaged quasienergy
,”
Int. J. Quantum Chem.
68
,
1
52
(
1998
).
56.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
B.
Mennucci
,
G. A.
Petersson
,
H.
Nakatsuji
,
M.
Caricato
,
X.
Li
,
H. P.
Hratchian
,
A. F.
Izmaylov
,
J.
Bloino
,
G.
Zheng
,
J. L.
Sonnenberg
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M.
Bearpark
,
J. J.
Heyd
,
E.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
N.
Rega
,
J. M.
Millam
,
M.
Klene
,
J. E.
Knox
,
J. B.
Cross
,
V.
Bakken
,
C.
Adamo
,
J.
Jaramillo
,
R.
Gomperts
,
R. E.
Stratmann
,
O.
Yazyev
,
A. J.
Austin
,
R.
Cammi
,
C.
Pomelli
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
V. G.
Zakrzewski
,
G. A.
Voth
,
P.
Salvador
,
J. J.
Dannenberg
,
S.
Dapprich
,
A. D.
Daniels
,
Ö.
Farkas
,
J. B.
Foresman
,
J. V.
Ortiz
,
J.
Cioslowski
, and
D. J.
Fox
, gaussian 09 Revision D.01,
Gaussian Inc.
,
Wallingford, CT
,
2009
.
57.
P. J.
Stephens
,
F. J.
Devlin
,
C. F.
Chabalowski
, and
M. J.
Frisch
, “
Ab initio calculation ofvibrational absorption and circular dichroism spectra using density functional force fields
,”
J. Phys. Chem.
98
,
11623
11627
(
1994
).
58.
A. D.
Becke
, “
Density-functional thermochemistry. III. The role of exact exchange
,”
J. Chem. Phys.
98
,
5648
5652
(
1993
).
59.
S. H.
Vosko
,
L.
Wilk
, and
M.
Nusair
, “
Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis
,”
Can. J. Phys.
58
,
1200
1211
(
1980
).
60.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
, “
Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density
,”
Phys. Rev. B
37
,
785
789
(
1988
).
61.
T. H.
Dunning
, “
Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
,”
J. Chem. Phys.
90
,
1007
1023
(
1989
).
62.
T.
Yanai
,
D. P.
Tew
, and
N. C.
Handy
, “
A new hybrid exchange–correlation functional using the coulomb-attenuating method (CAM-B3LYP)
,”
Chem. Phys. Lett.
393
,
51
57
(
2004
).
63.
D. E.
Woon
and
T. H.
Dunning
, Jr.
, “
Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties
,”
J. Chem. Phys.
100
,
2975
2988
(
1994
).
64.
B. O.
Roos
,
V.
Veryazov
, and
P.-O.
Widmark
, “
Relativistic atomic natural orbital type basis sets for the alkaline and alkaline-earth atoms applied to the ground-state potentials for the corresponding dimers
,”
Theor. Chim. Acta
111
,
345
351
(
2004
).
65.
A.
Kramida
,
Yu.
Ralchenko
,
J.
Reader
, and
NIST ASD Team
, NIST Atomic Spectra Database, version 5.2 (National Institute of Standards and Technology, Gaithersburg, MD, 2014), available online at http://physics.nist.gov/asd.
66.
C. S.
Wood
,
S. C.
Bennett
,
D.
Cho
,
B. P.
Masterson
,
J. L.
Roberts
,
C. E.
Tanner
, and
C. E.
Wieman
, “
Measurement of parity nonconservation and an anapole moment in cesium
,”
Science
275
,
1759
1763
(
1997
).
67.
L. E.
McMurchie
and
E. R.
Davidson
, “
One- and two-electron integrals over Cartesian Gaussian functions
,”
J. Comput. Phys.
26
,
218
231
(
1978
).
68.
T.
Helgaker
,
P.
Jørgensen
, and
J.
Olsen
,
Molecular Electronic-Structure Theory
(
Wiley
,
2000
).
69.
K. G.
Dyall
, “
Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the 4s, 5s, 6s, and 7s elements
,”
J. Phys. Chem. A
113
,
12638
12644
(
2009
).
70.
L.
Visscher
, “
Approximate molecular relativistic Dirac-Coulomb calculations using a simple Coulombic correction
,”
Theor. Chem. Acc.
98
,
68
70
(
1997
).
71.
J. A.
Bearden
and
A.
Burr
, “
Reevaluation of X-ray atomic energy levels
,”
Rev. Mod. Phys.
39
,
125
142
(
1967
).
You do not currently have access to this content.