The multi-configurational time-dependent Hartree (MCTDH) approach facilitates accurate high-dimensional quantum dynamics simulations. In the approach, the wavefunction is expanded in a direct product of self-adapting time-dependent single-particle functions (SPFs). The equations of motion for the expansion coefficients and the SPFs are obtained via the Dirac-Frenkel variational principle. While this derivation yields well-defined differential equations for the motion of occupied SPFs, singularities in the working equations resulting from unoccupied SPFs have to be removed by a regularization procedure. Here, an alternative derivation of the MCTDH equations of motion is presented. It employs an analysis of the time-dependence of the single-particle density matrices up to second order. While the analysis of the first order terms yields the known equations of motion for the occupied SPFs, the analysis of the second order terms provides new equations which allow one to identify optimal choices for the unoccupied SPFs. The effect of the optimal choice of the unoccupied SPFs on the structure of the MCTDH equations of motion and their regularization is discussed. Generalized equations applicable in the multi-layer MCTDH framework are presented. Finally, the effects resulting from the initial choice of the unoccupied SPFs are illustrated by a simple numerical example.

1.
H.-D.
Meyer
,
U.
Manthe
, and
L. S.
Cederbaum
,
Chem. Phys. Lett.
165
,
73
(
1990
).
2.
U.
Manthe
,
H.-D.
Meyer
, and
L. S.
Cederbaum
,
J. Chem. Phys.
97
,
3199
(
1992
).
3.
H.
Wang
and
M.
Thoss
,
J. Chem. Phys.
119
,
1289
(
2003
).
4.
U.
Manthe
,
J. Chem. Phys.
128
,
164116
(
2008
).
5.
G. A.
Worth
,
H. D.
Meyer
,
H.
Koeppel
,
L. S.
Cederbaum
, and
I.
Burghardt
,
Int. Rev. Phys. Chem.
27
,
569
(
2008
).
6.
T.
Westermann
,
J. B.
Kim
,
M. L.
Weichman
,
C.
Hock
,
T. I.
Yacovitch
,
J.
Palma
,
D. M.
Neumark
, and
U.
Manthe
,
Angew. Chem., Int. Ed.
53
,
1122
(
2014
).
7.
E. Y.
Wilner
,
H.
Wang
,
M.
Thoss
, and
E.
Rabani
,
Phys. Rev. B
89
,
205129
(
2014
).
8.
H.
Wang
,
J. Phys. Chem. A
118
,
9253
(
2014
).
9.
K.
Balzer
,
Z.
Li
,
O.
Vendrell
, and
M.
Eckstein
,
Phys. Rev. B
91
,
045136
(
2015
).
10.
M.
Schroeter
and
O.
Kuehn
,
J. Phys. Chem. A
117
,
7580
(
2013
).
11.
M.
Saab
,
M.
Sala
,
B.
Lasorne
,
F.
Gatti
, and
S.
Guerin
,
J. Chem. Phys.
141
,
134114
(
2014
).
12.
S.
Lopez-Lopez
,
R.
Martinazzo
, and
M.
Nest
,
J. Chem. Phys.
134
,
094102
(
2011
).
13.
F.
Bouakline
,
F.
Lueder
,
R.
Martinazzo
, and
P.
Saalfrank
,
J. Phys. Chem. A
116
,
11118
(
2012
).
14.
L.
Uranga-Pina
,
C.
Meier
, and
J.
Rubayo-Soneira
,
Chem. Phys. Lett.
543
,
12
(
2012
).
15.
M. M.
Teixidor
and
F.
Huarte-Larranaga
,
Chem. Phys.
399
,
264
(
2012
).
16.
J.
Wahl
,
R.
Binder
, and
I.
Burghardt
,
Comput. Theor. Chem.
1040
,
167
(
2014
).
17.
J. M.
Schurer
,
P.
Schmelcher
, and
A.
Negretti
,
Phys. Rev. A
90
,
033601
(
2014
).
18.
V. S.
Reddy
,
C.
Camacho
,
J.
Xia
,
R.
Jasti
, and
S.
Irle
,
J. Chem. Theory Comput.
10
,
4025
(
2014
).
19.
W.
Eisfeld
,
O.
Vieuxmaire
, and
A.
Viel
,
J. Chem. Phys.
140
,
224109
(
2014
).
20.
A.
Valdes
and
R.
Prosmiti
,
J. Phys. Chem. A
117
,
9518
(
2013
).
21.
T.
Mondal
,
S. R.
Reddy
, and
S.
Mahapatra
,
J. Chem. Phys.
137
,
054311
(
2012
).
22.
D.
Skouteris
and
A.
Lagana
,
Chem. Phys. Lett.
575
,
18
(
2013
).
23.
B.
Zhao
,
D.-H.
Zhang
,
S.-Y.
Lee
, and
Z.
Sun
,
J. Chem. Phys.
140
,
164108
(
2014
).
24.
M. D.
Coutinho-Neto
,
A.
Viel
, and
U.
Manthe
,
J. Chem. Phys.
121
,
9207
(
2004
).
25.
T.
Hammer
,
M. D.
Coutinho-Neto
,
A.
Viel
, and
U.
Manthe
,
J. Chem. Phys.
131
,
224109
(
2009
).
26.
T.
Hammer
and
U.
Manthe
,
J. Chem. Phys.
134
,
224305
(
2011
).
27.
M.
Schroeder
,
F.
Gatti
, and
H.-D.
Meyer
,
J. Chem. Phys.
134
,
234307
(
2011
).
28.
T.
Hammer
and
U.
Manthe
,
J. Chem. Phys.
136
,
054105
(
2012
).
29.
M.
Schroeder
and
H.-D.
Meyer
,
J. Chem. Phys.
141
,
034116
(
2014
).
30.
O.
Vendrell
,
F.
Gatti
,
D.
Lauvergnat
, and
H.-D.
Meyer
,
Angew. Chem., Int. Ed.
46
,
6918
(
2007
).
31.
O.
Vendrell
,
F.
Gatti
,
D.
Lauvergnat
, and
H.-D.
Meyer
,
J. Chem. Phys.
127
,
184302
(
2007
).
32.
O.
Vendrell
,
F.
Gatti
, and
H.-D.
Meyer
,
J. Chem. Phys.
127
,
184303
(
2007
).
33.
O.
Vendrell
,
M.
Brill
,
F.
Gatti
, and
H.-D.
Meyer
,
J. Chem. Phys.
130
,
234305
(
2009
).
34.
O.
Vendrell
,
F.
Gatti
, and
H.-D.
Meyer
,
J. Chem. Phys.
131
,
034308
(
2009
).
35.
F.
Huarte-Larrañaga
and
U.
Manthe
,
J. Chem. Phys.
113
,
5115
(
2000
).
36.
F.
Huarte-Larrañaga
and
U.
Manthe
,
J. Phys. Chem. A
105
,
2522
(
2001
).
37.
T.
Wu
,
H.-J.
Werner
, and
U.
Manthe
,
Science
306
,
2227
(
2004
).
38.
G.
Schiffel
and
U.
Manthe
,
J. Chem. Phys.
132
,
084103
(
2010
).
39.
R.
van Harrevelt
,
G.
Nyman
, and
U.
Manthe
,
J. Chem. Phys.
126
,
084303
(
2007
).
40.
G.
Nyman
,
R.
van Harrevelt
, and
U.
Manthe
,
J. Phys. Chem. A
111
,
10331
(
2007
).
41.
G.
Schiffel
and
U.
Manthe
,
J. Chem. Phys.
132
,
191101
(
2010
).
42.
G.
Schiffel
and
U.
Manthe
,
J. Chem. Phys.
133
,
174124
(
2010
).
43.
R.
Welsch
and
U.
Manthe
,
J. Chem. Phys.
141
,
051102
(
2014
).
44.
R.
Welsch
and
U.
Manthe
,
J. Chem. Phys.
141
,
174313
(
2014
).
45.
R.
Welsch
and
U.
Manthe
,
J. Chem. Phys.
142
,
064309
(
2015
).
46.
R.
Welsch
and
U.
Manthe
,
J. Phys. Chem. Lett.
6
,
338
(
2015
).
47.
G. A.
Worth
,
H.-D.
Meyer
, and
L. S.
Cederbaum
,
J. Chem. Phys.
105
,
4412
(
1996
).
48.
G. A.
Worth
,
H.-D.
Meyer
, and
L. S.
Cederbaum
,
J. Chem. Phys.
109
,
3518
(
1998
).
49.
A.
Raab
,
G. A.
Worth
,
H.-D.
Meyer
, and
L. S.
Cederbaum
,
J. Chem. Phys.
110
,
936
(
1999
).
50.
H.
Wang
,
D. E.
Skinner
, and
M.
Thoss
,
J. Chem. Phys.
125
,
174502
(
2006
).
51.
I.
Kondov
,
M.
Cizek
,
C.
Benesch
,
M.
Thoss
, and
H.
Wang
,
J. Phys. Chem. C
111
,
11970
(
2007
).
52.
I. R.
Craig
,
M.
Thoss
, and
H.
Wang
,
J. Chem. Phys.
135
,
064504
(
2011
).
53.
H.
Wang
,
I.
Pshenichnyuk
,
R.
Härtle
, and
M.
Thoss
,
J. Chem. Phys.
135
,
244506
(
2011
).
54.
T.
Westermann
,
R.
Brodbeck
,
A. B.
Rozhenko
,
W. W.
Schoeller
, and
U.
Manthe
,
J. Chem. Phys.
135
,
184102
(
2011
).
55.
M. H.
Beck
,
A.
Jäckle
,
G. A.
Worth
, and
H.-D.
Meyer
,
Phys. Rep.
324
,
1
(
2000
).
56.
H.-D.
Meyer
and
G. A.
Worth
,
Theor. Chem. Acc.
109
,
251
(
2003
).
57.
F.
Huarte-Larrañaga
and
U.
Manthe
,
Z. Phys. Chem.
221
,
171
(
2007
).
58.
H.-D.
Meyer
,
F.
Gatti
, and
G. A.
Worth
,
Multidimensional Quantum Dynamics: MCTDH Theory and Applications
(
Wiley-VCH
,
Weinheim
,
2009
).
60.
H.-D.
Meyer
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
351
(
2012
).
61.
D.
Conte
and
C.
Lubich
,
ESAIM: Math. Modell. Numer. Anal.
44
,
759
(
2010
).
62.
U.
Manthe
,
J. Chem. Phys.
105
,
6989
(
1996
).
63.
R.
van Harrevelt
and
U.
Manthe
,
J. Chem. Phys.
123
,
064106
(
2005
).
64.
U.
Manthe
,
J. Chem. Phys.
130
,
054109
(
2009
).
65.
H.
Wang
, discussion at the BIRS Workshop on Mathematical Methods in Quantum Molecular Dynamics, Banff, Canada, 2013.
66.
C.
Lubich
, “
Time integration in the multiconfiguration time-dependent Hartree method of molecular quantum dynamics
,” preprint, http://na.uni-tuebingen.de/pub/lubich/papers/mcsplit.pdf.
67.
K.-S.
Lee
and
U. R.
Fischer
,
Int. J. Mod. Phys. B
28
,
1550021
(
2014
).
68.
U.
Manthe
,
J. Chem. Phys.
101
,
2652
(
1994
).
69.
M. H.
Beck
and
H.-D.
Meyer
,
Z. Phys. D
42
,
113
(
1997
).
You do not currently have access to this content.