Derjaguin’s approximation provides the electrical-double-layer interaction force between two arbitrary convex surfaces as the product of the corresponding one-dimensional parallel-plate interaction potential and an effective radius R (function of the radii of curvature and relative orientation of the two surfaces at minimum separation). The approximation holds when both the Debye length 1/κ and minimum separation h are small compared to R. We show here that a simple transformation, R [ R ] [ K 1 ] [ K 2 ] K 1 K 2 , yields an approximation uniformly valid for arbitrary separations h; here, Ki is the Gaussian curvature of particle i at minimum separation, and [  ⋅  ] is an operator which adds h/2 to all radii of curvature present in the expression on which it acts. We derive this result in two steps. First, we extend the two-dimensional ray-theory analysis of Schnitzer [Phys. Rev. E 91, 022307 (2015)], valid for κh, κR ≫ 1, to three dimensions. We thereby obtain a general closed form expression for the force by matching nonlinear diffuse-charge boundary layers with a WKBJ-type expansion describing the bulk potential, and subsequent integration via Laplace’s method of the traction over the medial surface generated by all spheres maximally inscribed between the two surfaces. Second, we exploit the existence of an overlap domain, 1 ≪ κhκR, where both the ray-theory and the Derjaguin approximations hold, to systematically form the generalized mapping. The validity of the result is demonstrated by comparison with numerical computations.

1.
J.
Lyklema
, in
Fundamentals of Interface and Colloid Science
(
Academic
,
New York
,
1995
), Vol.
II
.
2.
D. F.
Evans
and
H.
Wennerström
,
The Colloidal Domain
(
Wiley-VCH
,
New York
,
1999
).
3.
D. A.
Saville
,
Annu. Rev. Fluid Mech.
9
,
321
(
1977
).
4.
H. A.
Stone
,
A. D.
Stroock
, and
A.
Ajdari
,
Annu. Rev. Fluid Mech.
36
,
381
(
2004
).
5.
H. C.
Chang
and
L. Y.
Yeo
,
Electrokinetically Driven Microfluidics and Nanofluidics
(
Cambridge University Press
,
Cambridge, UK
,
2010
).
6.
B. J.
Kirby
,
Micro-and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices
(
Cambridge University Press
,
2010
).
7.
A.
Revil
,
P. A.
Pezard
, and
P. W. J.
Glover
,
J. Geophys. Res.
104
,
20021
, doi:10.1029/1999JB900089 (
1999
).
8.
J.
Newman
and
K. E.
Thomas-Alyea
,
Electrochemical Systems
(
John Wiley & Sons
,
2012
).
9.
I.
Rubinstein
, in
Electro-Diffusion of Ions
(
SIAM
,
1990
), Vol.
11
.
10.
S. G.
Bike
and
D. C.
Prieve
,
Int. J. Multiphase Flow
16
,
727
(
1990
).
11.
E. J. W.
Verwey
and
J. T. G.
Overbeek
,
Theory of the Stability of Lyophobic Colloids
(
Elsevier
,
Amsterdam
,
1948
).
12.
D. C.
Prieve
,
P. J.
Sides
, and
C. L.
Wirth
,
Curr. Opin. Colloid Interface Sci.
15
,
160
(
2010
).
13.
C. L.
Wirth
,
R. M.
Rock
,
P. J.
Sides
, and
D. C.
Prieve
,
Langmuir
27
,
9781
(
2011
).
14.
H. H.
Strey
,
V. A.
Parsegian
, and
R.
Podgornik
,
Phys. Rev. Lett.
78
,
895
(
1997
).
15.
K. D.
Dorfman
,
Rev. Mod. Phys.
82
,
2903
(
2010
).
16.
P. A.
Harvey
,
A. V.
Nguyen
, and
G. M.
Evans
,
J. Colloid Interface Sci.
250
,
337
(
2002
).
17.
D. C.
Prieve
and
E.
Ruckenstein
,
J. Theor. Biol.
56
,
205
(
1976
).
18.
M.
Hermansson
,
Colloids Surf., B
14
,
105
(
1999
).
19.
A. T.
Poortinga
,
R.
Bos
,
W.
Norde
, and
H. J.
Busscher
,
Surf. Sci. Rep.
47
,
1
(
2002
).
20.
S. A.
Edwards
and
D. R. M.
Williams
,
Curr. Opin. Colloid Interface Sci.
9
,
139
(
2004
).
21.
T. J.
Senden
,
C. J.
Drummond
, and
P.
Kekicheff
,
Langmuir
10
,
358
(
1994
).
22.
S. G.
Flicker
and
S. G.
Bike
,
Langmuir
9
,
257
(
1993
).
23.
J.
Sotres
and
A. M.
Baró
,
Biophys. J.
98
,
1995
(
2010
).
24.
L.
Guldbrand
,
B.
Jonsson
,
H.
Wennerstrom
, and
P.
Linse
,
J. Chem. Phys.
80
,
2221
(
1984
).
25.
W. B.
Russel
,
D. A.
Saville
, and
W. R.
Schowalter
,
Colloidal Dispersions
(
Cambridge University Press
,
1992
).
26.
L. R.
White
,
J. Colloid Interface Sci.
95
,
286
(
1983
).
27.
B. A.
Todd
and
S. J.
Eppell
,
Langmuir
20
,
4892
(
2004
).
28.
S.
Rentsch
,
R.
Pericet-Camara
,
G.
Papastavroua
, and
M.
Borkovec
,
Phys. Chem. Chem. Phys.
8
,
2531
(
2006
).
29.
O.
Schnitzer
,
Phys. Rev. E
91
,
022307
(
2015
).
30.
S. L.
Carnie
,
D. Y. C.
Chan
, and
J.
Stankovich
,
J. Colloid Interface Sci.
165
,
116
(
1994
).
31.
J.
Stankovich
and
S. L.
Carnie
,
Langmuir
12
,
1453
(
1996
).
32.
P.
Warszyński
and
Z.
Adamczyk
,
J. Colloid Interface Sci.
187
,
283
(
1997
).
33.
S. L.
Carnie
,
D. Y. C.
Chan
, and
J. S.
Gunning
,
Langmuir
10
,
2993
(
1994
).
34.
A. B.
Glendinning
and
W. B.
Russel
,
J. Colloid Interface Sci.
93
,
95
(
1983
).
35.
L. N.
McCartney
and
S.
Levine
,
J. Colloid Interface Sci.
30
,
345
(
1969
).
36.
G. M.
Bell
,
S.
Levine
, and
L. N.
McCartney
,
J. Colloid Interface Sci.
33
,
335
(
1970
).
37.
J. E.
Sader
,
S. L.
Carnie
, and
D. C.
Chan
,
J. Colloid Interface Sci.
171
,
46
(
1995
).
38.
I.
Rubinstein
and
B.
Zaltzman
,
Math. Models Methods Appl. Sci.
11
,
263
(
2001
).
39.
E.
Yariv
,
Chem. Eng. Commun.
197
,
3
(
2009
).
40.
O.
Schnitzer
and
E.
Yariv
,
Phys. Rev. E
86
,
021503
(
2012
).
41.
R.
Pericet-Camara
,
G.
Papastavrou
,
S. H.
Behrens
, and
M.
Borkovec
,
J. Phys. Chem. B
108
,
19467
(
2004
).
42.
E. J.
Hinch
,
Perturbation Methods
(
Cambridge University Press
,
1991
).
43.
S. J.
Chapman
,
J. M. H.
Lawry
, and
J. R.
Ockendon
,
SIAM J. Appl. Math.
60
,
121
(
1999
).
44.
J. R.
Ockendon
,
S.
Howison
,
A.
Lacey
, and
A.
Movchan
,
Applied Partial Differential Equations
(
Oxford University Press
,
2003
).
45.
M.
Born
and
E.
Wolf
,
Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light
(
CUP Archive
,
1999
).
46.
M. H.
Holmes
, in
Introduction to Perturbation Methods
(
Springer Science & Business Media
,
2012
), Vol.
20
.
47.
N.
Bleistein
and
R. A.
Handelsman
,
Asymptotic Expansions of Integrals
(
Courier Corporation
,
1975
).
48.
R. F.
Probstein
,
Physicochemical Hydrodynamics: An Introduction
(
John Wiley & Sons
,
2005
).
49.
F. J. M.
Ruiz-Cabello
,
G.
Trefalt
,
P.
Maroni
, and
M.
Borkovec
,
Langmuir
30
,
4551
(
2014
).
50.
P.
Attard
,
D. J.
Mitchell
, and
B. W.
Ninham
,
J. Chem. Phys.
88
,
4987
(
1988
).
51.
P.
Attard
,
D. J.
Mitchell
, and
B. W.
Ninham
,
J. Chem. Phys.
89
,
4358
(
1988
).
52.
M.
Bostrom
,
D. R. M.
Williams
, and
B. W.
Ninham
,
Phys. Rev. Lett.
87
,
168103
(
2001
).
53.
A. S.
Khair
and
T. M.
Squires
,
J. Fluid Mech.
640
,
343
(
2009
).
54.
M. Z.
Bazant
,
B. D.
Storey
, and
A. A.
Kornyshev
,
Phys. Rev. Lett.
106
,
046102
(
2011
).
55.
S.
Perkin
,
Phys. Chem. Chem. Phys.
14
,
5052
(
2012
).
56.
D.
Vella
,
S.
Perkin
, and
A.
Goriely
,
J. Chem. Phys.
141
,
094904
(
2014
).
57.
A. A.
Lee
,
D.
Vella
, and
A.
Goriely
, “
Electrokinetic transport in ionic liquids
,” preprint arXiv:1502.01276 (2015).
58.
S. H.
Behrens
and
M.
Borkovec
,
Phys. Rev. E
60
,
7040
(
1999
).
59.
P. M.
Biesheuvel
,
J. Colloid Interface Sci.
275
,
514
(
2004
).
60.
H.
Ohshima
,
Electrical Phenomena at Interfaces and Biointerfaces: Fundamentals and Applications in Nano-, Bio-, and Environmental Sciences
(
John Wiley & Sons
,
2012
).
You do not currently have access to this content.