Our previous studies have reported an empirical model, which explains the electrophoretic mobility (μ) of double-stranded DNA (dsDNA) as a combination of a basic migration term (Rouse-like or reptation) and entropy loss term in polymer gels with ideal network structure. However, this case is of exception, considering a large amount of heterogeneity in the conventional polymer gels. In this study, we systematically tune the heterogeneity in the polymer gels and study the migration of dsDNA in these gels. Our experimental data well agree with the model found for ideal networks. The basic migration mechanism (Rouse-like or reptation) persists perfectly in the conventional heterogeneous polymer gel system, while the entropy loss term continuously changes with increase in the heterogeneity. Furthermore, we found that in the limit where dsDNA is shorter than dsDNA persistence length, the entropy loss term may be related to the collisional motions between DNA fragments and the cross-links.

1.
J.-L.
Viovy
,
Rev. Mod. Phys.
72
,
813
872
(
2000
).
2.
A.
Sartori
,
V.
Barbier
, and
J. L.
Viovy
,
Electrophoresis
24
,
421
440
(
2003
).
3.
G. W.
Slater
,
J.
Rousseau
,
J.
Noolandi
,
C.
Turmel
, and
M.
Lalande
,
Biopolymers
27
,
509
524
(
1988
).
4.
A. E.
Barron
,
H. W.
Blanch
, and
D. S.
Soane
,
Electrophoresis
15
,
597
615
(
1994
).
5.
T.
Duke
,
J.-L.
Viovy
, and
A. N.
Semenov
,
Biopolymers
34
,
239
247
(
1994
).
6.
D.
Rodbard
and
A.
Chrambach
,
Proc. Natl. Acad. Sci. U. S. A.
65
,
970
977
(
1970
).
7.
A.
Chrambach
and
D.
Rodbard
,
Science
172
,
440
451
(
1971
).
8.
A. G.
Ogston
,
Trans. Faraday Soc.
54
,
1754
1757
(
1958
).
9.
M.
Doi
and
S. F.
Edwards
,
J. Chem. Soc., Faraday Trans.
2
(
75
),
38
54
(
1979
).
10.
P. G.
de Gennes
,
J. Chem. Phys.
55
,
572
579
(
1971
).
11.
P. G.
de Gennes
,
J. Chem. Phys.
72
,
4756
4763
(
1980
).
12.
G. W.
Slater
and
J.
Noolandi
,
Biopolymers
25
,
431
454
(
1986
).
13.
O. J.
Lumpkin
,
P.
Déjardin
, and
B. H.
Zimm
,
Biopolymers
24
,
1573
1593
(
1985
).
14.
D.
Smisek
and
D.
Hoagland
,
Science
248
,
1221
1223
(
1990
).
15.
D. L.
Smisek
and
D. A.
Hoagland
,
Macromolecules
22
,
2270
2277
(
1989
).
16.
J.
Rousseau
,
G.
Drouin
, and
G. W.
Slater
,
Phys. Rev. Lett.
79
,
1945
1948
(
1997
).
17.
D. H.
Van Winkle
,
A.
Beheshti
, and
R. L.
Rill
,
Electrophoresis
23
,
15
19
(
2002
).
18.
X.
Li
,
K.
Khairulina
,
U.
Chung
, and
T.
Sakai
,
Macromolecules
47
,
3582
3586
(
2014
).
19.
N.
Shi
and
V. M.
Ugaz
,
Phys. Rev. Lett.
105
,
108101
(
2010
).
20.
See supplementary material at http://dx.doi.org/10.1063/1.4922367 for additional information and results of van Winkle function fit of Tetra-PEG gels.
21.
T.
Sakai
,
T.
Matsunaga
,
Y.
Yamamoto
,
C.
Ito
,
R.
Yoshida
,
S.
Suzuki
,
N.
Sasaki
,
M.
Shibayama
, and
U.
Chung
,
Macromolecules
41
,
5379
5384
(
2008
).
22.
T.
Matsunaga
,
T.
Sakai
,
Y.
Akagi
,
U.
Chung
, and
M.
Shibayama
,
Macromolecules
42
,
6245
6252
(
2009
).
23.
T.
Matsunaga
,
T.
Sakai
,
Y.
Akagi
,
U.
Chung
, and
M.
Shibayama
,
Macromolecules
42
,
1344
1351
(
2009
).
24.
K.
Nishi
,
M.
Chijiishi
,
Y.
Katsumoto
,
T.
Nakao
,
K.
Fujii
,
U.
Chung
,
H.
Noguchi
,
T.
Sakai
, and
M.
Shibayama
,
J. Chem. Phys.
137
,
224903
(
2012
).
25.
K.
Nishi
,
K.
Fujii
,
M.
Chijiishi
,
Y.
Katsumoto
,
U.
Chung
,
T.
Sakai
, and
M.
Shibayama
,
Macromolecules
45
,
1031
1036
(
2011
).
26.
Y.
Akagi
,
T.
Katashima
,
Y.
Katsumoto
,
K.
Fujii
,
T.
Matsunaga
,
U.
Chung
,
M.
Shibayama
, and
T.
Sakai
,
Macromolecules
44
,
5817
5821
(
2011
).
27.
K. A.
Ferguson
,
Metabolism
13
,
985
1002
(
1964
).
28.
X.
Li
,
K.
Khairulina
,
U.
Chung
, and
T.
Sakai
,
Macromolecules
46
,
8657
8663
(
2013
).
29.
E.
Hahn
,
L.
Wurts
,
D.
Tietz
, and
A.
Chrambach
,
Electrophoresis
9
,
243
255
(
1988
).
30.
D. L.
Holmes
and
N. C.
Stellwagen
,
Electrophoresis
12
,
253
263
(
1991
).
31.
N. C.
Stellwagen
and
E.
Stellwagen
,
J. Chromatogr. A
1216
,
1917
1929
(
2009
).
32.
T. A.
Duke
,
A. N.
Semenov
, and
J. L.
Viovy
,
Phys. Rev. Lett.
69
,
3260
3263
(
1992
).
33.
M.
Bulacu
and
E.
van der Giessen
,
J. Chem. Phys.
123
,
114901
(
2005
).
34.
N.
Chen
and
A.
Chrambach
,
J. Biochem. Biophys. Methods
35
,
175
184
(
1997
).
35.
P. G.
De Gennes
,
Scaling Concepts in Polymer Physics
(
Cornell University Press
,
1979
).
36.
P. J.
Flory
,
Principles of Polymer Chemistry
(
Cornell University Press
,
1953
).
37.
K.
Nishi
,
H.
Asai
,
K.
Fujii
,
Y.-S.
Han
,
T.-H.
Kim
,
T.
Sakai
, and
M.
Shibayama
,
Macromolecules
47
,
1801
1809
(
2014
).
38.
C. W.
Macosko
and
D. R.
Miller
,
Macromolecules
9
,
199
206
(
1976
).
39.
D. R.
Miller
and
C. W.
Macosko
,
Macromolecules
9
,
206
211
(
1976
).
40.
M.
Muthukumar
and
A.
Baumgaertner
,
Macromolecules
22
,
1941
1946
(
1989
).
41.
M.
Muthukumar
and
A.
Baumgaertner
,
Macromolecules
22
,
1937
1941
(
1989
).

Supplementary Material

You do not currently have access to this content.