A general class of nonadditive sticky-hard-sphere binary mixtures, where small and large spheres represent the solvent and the solute, respectively, is introduced. The solute-solute and solvent-solvent interactions are of hard-sphere type, while the solute-solvent interactions are of sticky-hard-sphere type with tunable degrees of size nonadditivity and stickiness. Two particular and complementary limits are studied using analytical and semi-analytical tools. The first case is characterized by zero nonadditivity, lending itself to a Percus–Yevick approximate solution from which the impact of stickiness on the spinodal curves and on the effective solute-solute potential is analyzed. In the opposite nonadditive case, the solvent-solvent diameter is zero and the model can then be reckoned as an extension of the well-known Asakura–Oosawa model with additional sticky solute-solvent interaction. This latter model has the property that its exact effective one-component problem involves only solute-solute pair potentials for size ratios such that a solvent particle fits inside the interstitial region of three touching solutes. In particular, we explicitly identify the three competing physical mechanisms (depletion, pulling, and bridging) giving rise to the effective interaction. Some remarks on the phase diagram of these two complementary models are also addressed through the use of the Noro–Frenkel criterion and a first-order perturbation analysis. Our findings suggest reentrance of the fluid-fluid instability as solvent density (in the first model) or adhesion (in the second model) is varied. Some perspectives in terms of the interpretation of recent experimental studies of microgels adsorbed onto large polystyrene particles are discussed.

1.
S.
Asakura
and
F.
Oosawa
,
J. Chem. Phys.
22
,
1255
(
1954
).
2.

Usually, when talking about the AO model, one refers to a colloid-polymer mixture where the depletants are linear homopolymers of radius of gyration σs/2 in a good solvent. After tracing out the monomer degrees of freedom and replacing each chain with a particle at its center of mass, the homopolymers can be considered, to a first level of approximation, as noninteracting among themselves but unable to penetrate a sphere of diameter σl + σs around each colloidal particle. In this work, however, we will rather talk about a solvent-solute mixture.

3.
L.
Sapir
and
D.
Harries
,
J. Phys. Chem. Lett.
5
,
1061
(
2014
).
4.
L.
Sapir
and
D.
Harries
,
Curr. Opin. Colloid Interface Sci.
20
,
3
(
2015
).
5.
C.
Bechinger
,
D.
Rudhardt
,
P.
Leiderer
,
R.
Roth
, and
S.
Dietrich
,
Phys. Rev. Lett.
83
,
3960
(
1999
).
6.
Y. C.
Kim
and
J.
Mittal
,
Phys. Rev. Lett.
110
,
208102
(
2013
).
7.
R. J.
Baxter
,
J. Chem. Phys.
49
,
2770
(
1968
).
8.
C.
Zhao
,
G.
Yuan
,
D.
Jia
, and
C. C.
Han
,
Soft Matter
8
,
7036
(
2012
).
9.
C.
Zhao
,
G.
Yuan
, and
C. C.
Han
,
Macromolecules
45
,
9468
(
2012
).
10.
R.
Fantoni
,
J. W. O.
Salari
, and
B.
Klumperman
,
Phys. Rev. E
85
,
061404
(
2012
).
11.
J.
Chen
,
S. R.
Kline
, and
Y.
Liu
,
J. Chem. Phys.
142
,
084904
(
2015
);
[PubMed]
Erratum,
J.
Chen
,
S. R.
Kline
, and
Y.
Liu
,
J. Chem. Phys.
142
,
149901
(
2015
).
[PubMed]
12.
R.
Fantoni
,
D.
Gazzillo
, and
A.
Giacometti
,
Phys. Rev. E
72
,
011503
(
2005
).
13.
J. W.
Perram
and
E. R.
Smith
,
Chem. Phys. Lett.
35
,
138
(
1975
).
15.
A.
Santos
,
S. B.
Yuste
, and
M.
López de Haro
,
J. Chem. Phys.
109
,
6814
(
1998
).
16.
M.
Dijkstra
,
R.
van Roij
, and
R.
Evans
,
Phys. Rev. E
59
,
5744
(
1999
).
17.
M.
Dijkstra
,
J. M.
Brader
, and
R.
Evans
,
J. Phys.: Condens. Matter
11
,
10079
(
1999
).
18.
K.
Binder
,
P.
Virnau
, and
A.
Statt
,
J. Chem. Phys.
141
,
140901
(
2014
).
19.
D. J.
Ashton
and
N. B.
Wilding
,
Phys. Rev. E
89
,
031301(R)
(
2014
).
20.
D. J.
Ashton
and
N. B.
Wilding
,
J. Chem. Phys.
140
,
244118
(
2014
).
21.
A.
Santos
,
M.
López de Haro
,
G.
Fiumara
, and
F.
Saija
,
J. Chem. Phys.
142
,
224903
(
2015
).
22.
T.
Zykova-Timan
,
J. Chem. Phys.
133
,
014705
(
2010
).
23.
E. G.
Noya
,
C.
Vega
, and
E.
de Miguel
,
J. Chem. Phys.
128
,
154507
(
2008
).
24.
L. A.
Fernández
,
V.
Martín-Mayor
,
B.
Seone
, and
P.
Verrocchio
,
Phys. Rev. Lett.
108
,
165701
(
2012
).
25.
M. G.
Noro
and
D.
Frenkel
,
J. Chem. Phys.
113
,
2941
(
2000
).
26.
R.
Menichetti
,
A.
Pelissetto
,
G. D.
Adamo
, and
C.
Pierleoni
, “
Integral equation analysis of single-site coarse-grained models for polymer–colloid mixtures
,”
Mol. Phys.
(published online 2015).
27.
M.
Dijkstra
,
R.
van Roij
, and
R.
Evans
,
Phys. Rev. Lett.
82
,
117
(
1999
).
28.
R. J.
Baxter
,
J. Chem. Phys.
52
,
4559
(
1970
).
29.
B.
Barboy
and
R.
Tenne
,
Chem. Phys.
38
,
369
(
1979
).
30.
D.
Gazzillo
and
A.
Giacometti
,
J. Chem. Phys.
120
,
4742
(
2004
).
31.
S. B.
Yuste
,
A.
Santos
, and
M.
López de Haro
,
J. Chem. Phys.
128
,
134507
(
2008
).
32.
R.
Fantoni
and
A.
Santos
,
J. Chem. Phys.
140
,
244513
(
2014
).
33.
L.
Vega
,
E.
de Miguel
,
L. F.
Rull
,
G.
Jackson
, and
I. A.
McLure
,
J. Chem. Phys.
96
,
2296
(
1992
).
34.
H.
Liu
,
S.
Garde
, and
S.
Kumar
,
J. Chem. Phys.
123
,
174505
(
2005
).
35.
L.
Acedo
and
A.
Santos
,
J. Chem. Phys.
115
,
2805
(
2001
).
36.
R.
Espíndola-Heredia
,
F.
del Río
, and
A.
Malijevský
,
J. Chem. Phys.
130
,
024509
(
2009
).
37.
M.
Miller
and
D.
Frenkel
,
J. Chem. Phys.
121
,
535
(
2004
).
38.
A.
Statt
,
P.
Virnau
, and
K.
Binder
, “
Crystal nuclei in melts: A Monte Carlo simulation of a model for attractive colloids
,”
Mol. Phys.
(published online 2015).
39.
A. P.
Gast
,
C. K.
Hall
, and
W. B.
Russel
,
J. Colloid Interface Sci.
96
,
251
(
1983
).
40.
J. M.
Brader
and
R.
Evans
,
Physica A
306
,
287
(
2002
).
41.
N. F.
Carnahan
and
K. E.
Starling
,
J. Chem. Phys.
51
,
635
(
1969
).
42.
W. R.
Smith
and
D.
Henderson
,
Mol. Phys.
19
,
411
(
1970
).
43.
M.
López de Haro
,
C. F.
Tejero
, and
A.
Santos
,
J. Chem. Phys.
138
,
161104
(
2013
).
44.
L.
Rovigatti
,
N.
Gnan
,
A.
Parola
, and
E.
Zaccarelli
,
Soft Matter
11
,
692
(
2015
).
45.
J. L.
Lebowitz
and
J. S.
Rowlinson
,
J. Chem. Phys.
41
,
133
(
1964
).
46.
T.
Biben
and
J.-P.
Hansen
,
Phys. Rev. Lett.
66
,
2215
(
1991
).
47.
A.
Malijevský
,
S. B.
Yuste
, and
A.
Santos
,
J. Chem. Phys.
125
,
074507
(
2006
).
48.
J.
Largo
,
M. A.
Miller
, and
F.
Sciortino
,
J. Chem. Phys.
128
,
134513
(
2008
).
49.
G.
Stell
,
J. Stat. Phys.
63
,
1203
(
1991
).
50.
E.
Zaccarelli
,
G.
Foffi
,
P.
Tartaglia
,
F.
Sciortino
, and
K.
Dawson
,
Prog. Colloid Polym. Sci.
115
,
371
(
2000
).
51.
A.
Jamnik
,
J. Chem. Phys.
128
,
234504
(
2008
).
52.
M.
Miller
and
D.
Frenkel
,
Phys. Rev. Lett.
90
,
135702
(
2003
).
53.
M.
López de Haro
,
S. B.
Yuste
, and
A.
Santos
, in
Theory and Simulation of Hard-Sphere Fluids and Related Systems
,
Lecture Notes in Physics
Vol.
753
, edited by
A.
Mulero
(
Springer-Verlag
,
Berlin
,
2008
), pp.
183
245
.
You do not currently have access to this content.