We investigate thermodynamic properties of anisotropic colloidal dumbbells in the frameworks provided by the Reference Interaction Site Model (RISM) theory and an Optimized Perturbation Theory (OPT), this latter based on a fourth-order high-temperature perturbative expansion of the free energy, recently generalized to molecular fluids. Our model is constituted by two identical tangent hard spheres surrounded by square-well attractions with same widths and progressively different depths. Gas-liquid coexistence curves are obtained by predicting pressures, free energies, and chemical potentials. In comparison with previous simulation results, RISM and OPT agree in reproducing the progressive reduction of the gas-liquid phase separation as the anisotropy of the interaction potential becomes more pronounced; in particular, the RISM theory provides reasonable predictions for all coexistence curves, bar the strong anisotropy regime, whereas OPT performs generally less well. Both theories predict a linear dependence of the critical temperature on the interaction strength, reproducing in this way the mean-field behavior observed in simulations; the critical density—that drastically drops as the anisotropy increases—turns to be less accurate. Our results appear as a robust benchmark for further theoretical studies, in support to the simulation approach, of self-assembly in model colloidal systems.

1.
T. S.
Skelhon
,
Y.
Chen
, and
S. A. F.
Bon
,
Soft Matter
10
,
7730
(
2014
).
2.
F.
Ma
,
S.
Wang
,
H.
Zao
,
D. T.
Wu
, and
N.
Wu
,
Soft Matter
10
,
8349
(
2014
).
3.
D. J.
Kraft
,
R.
Ni
,
F.
Smallenburg
,
M.
Hermes
,
K.
Yoon
,
D. A.
Weitz
,
A.
van Blaaderen
,
J.
Groenewold
,
M.
Dijkstra
, and
W.
Kegel
,
Proc. Natl. Acad. Sci. U. S. A.
109
,
10787
(
2012
).
4.
D.
Nagao
,
K.
Goto
,
H.
Ishii
, and
M.
Konno
,
Langmuir
27
,
13302
(
2011
).
5.
K.
Yoon
,
D.
Lee
,
J. W.
Kim
,
J.
Kim
, and
D. A.
Weitz
,
Chem. Commun.
48
,
9056
(
2012
).
6.
J. D.
Forster
,
J. G.
Park
,
M.
Mittal
,
H.
Noh
,
C. F.
Schreck
,
C. S.
O’Hern
,
H.
Cao
,
E. M.
Furst
, and
E. R.
Dufresne
,
ACS Nano
5
,
6695
(
2011
).
7.
I. D.
Hosein
and
C. M.
Liddell
,
Langmuir
23
,
10479
(
2007
).
8.
G. A.
Chapela
,
F.
del Río
, and
J.
Alejandre
,
J. Chem. Phys.
134
,
224105
(
2011
).
9.
G. A.
Chapela
and
J.
Alejandre
,
J. Chem. Phys.
135
,
084126
(
2011
).
10.
M. A.
Miller
,
R.
Blaak
,
C. N.
Lumb
, and
J.-P.
Hansen
,
J. Chem. Phys.
130
,
114507
(
2009
).
11.
P.
Ilg
and
E.
Del Gado
,
Soft Matter
7
,
163
(
2011
).
12.
S. H.
Chong
,
A. J.
Moreno
,
F.
Sciortino
, and
W.
Kob
,
Phys. Rev. Lett.
94
,
215701
(
2005
).
13.
G.
Munaò
,
P.
O’Toole
,
T. S.
Hudson
,
D.
Costa
,
C.
Caccamo
,
A.
Giacometti
, and
F.
Sciortino
,
Soft Matter
10
,
5269
(
2014
).
14.
G.
Munaò
,
P.
O’Toole
,
T. S.
Hudson
,
D.
Costa
,
C.
Caccamo
,
F.
Sciortino
, and
A.
Giacometti
,
J. Phys.: Condens. Matter
27
,
234101
(
2015
).
15.
G.
Avvisati
,
T.
Vissers
, and
M.
Dijkstra
,
J. Chem. Phys.
142
,
084905
(
2015
).
16.
F.
Tu
,
B. J.
Park
, and
D.
Lee
,
Langmuir
29
,
12679
(
2013
).
17.
B. J.
Park
and
D.
Lee
,
ACS Nano
6
,
782
(
2012
).
18.
L.
Hong
,
A.
Cacciuto
,
E.
Luijten
, and
S.
Granick
,
Langmuir
24
,
621
(
2008
).
19.
C.-H.
Chen
,
R. K.
Shah
,
A. R.
Abate
, and
D. A.
Weitz
,
Langmuir
25
,
4320
(
2009
).
20.
B. S.
Jiang
,
Q.
Chen
,
M.
Tripathy
,
E.
Luijten
,
K. S.
Schweizer
, and
S.
Granick
,
Adv. Mater.
22
,
1060
(
2010
).
21.
L.
Hong
,
A.
Cacciuto
,
E.
Luijten
, and
S.
Granick
,
Nano Lett.
6
,
2510
(
2006
).
22.
Q.
Chen
,
J. K.
Whitmer
,
S.
Jiang
,
S. C.
Bae
,
E.
Luijten
, and
S.
Granick
,
Science
331
,
199
(
2011
).
23.
Q.
Chen
,
J.
Yan
,
J.
Zhang
,
S. C.
Bae
, and
S.
Granick
,
Langmuir
28
,
13555
(
2012
).
24.
J.
Yan
,
M.
Bloom
,
S. C.
Bae
,
E.
Luijten
, and
S.
Granick
,
Nature
491
,
578
(
2012
).
25.
F.
Sciortino
,
A.
Giacometti
, and
G.
Pastore
,
Phys. Rev. Lett.
103
,
237801
(
2009
).
26.
F.
Sciortino
,
A.
Giacometti
, and
G.
Pastore
,
Phys. Chem. Chem. Phys.
12
,
11869
(
2010
).
27.
T.
Vissers
,
Z.
Preisler
,
F.
Smallenburg
,
M.
Dijkstra
, and
F.
Sciortino
,
J. Chem. Phys.
138
,
164505
(
2013
).
28.
S. N.
Fejer
,
D.
Chakrabarti
,
H.
Kusumaatmaja
, and
D. J.
Wales
,
Nanoscale
6
,
9448
(
2014
).
29.
G.
Munaò
,
D.
Costa
,
A.
Giacometti
,
C.
Caccamo
, and
F.
Sciortino
,
Phys. Chem. Chem. Phys.
15
,
20590
(
2013
).
30.
G.
Munaò
,
D.
Costa
, and
C.
Caccamo
,
Chem. Phys. Lett.
470
,
240
(
2009
).
31.
G.
Munaò
,
D.
Costa
, and
C.
Caccamo
,
J. Chem. Phys.
130
,
144504
(
2009
).
32.
M.
Marechal
,
H. H.
Goetzke
,
A.
Härtel
, and
H.
Löwen
,
J. Chem. Phys.
135
,
234510
(
2011
).
33.
D.
Chandler
and
H. C.
Andersen
,
J. Chem. Phys.
57
,
1930
(
1972
).
34.
R.
Espíndola-Heredia
,
F.
del Río
, and
A.
Malijevský
,
J. Chem. Phys.
130
,
024509
(
2009
).
35.
F.
Gámez
,
J. Chem. Phys.
140
,
234504
(
2014
).
36.
L.
Li
,
K.
Tang
,
L.
Wu
,
W.
Zhao
, and
J.
Cai
,
J. Chem. Phys.
136
,
214508
(
2012
).
37.
J.-P.
Hansen
and
I. R.
McDonald
,
Theory of Simple Liquids
, 3rd ed. (
Academic Press
,
New York
,
2006
).
38.
L. J.
Lowden
and
D.
Chandler
,
J. Chem. Phys.
61
,
5228
(
1974
).
39.
L.
Harnau
,
J.-P.
Hansen
, and
D.
Costa
,
Europhys. Lett.
53
,
729
(
2001
).
40.
D.
Costa
,
J.-P.
Hansen
, and
L.
Harnau
,
Mol. Phys.
103
,
1917
(
2005
).
41.
J.-P.
Hansen
and
C.
Pearson
,
Mol. Phys.
104
,
3389
(
2006
).
42.
P. G.
Khalatur
,
L. V.
Zherenkova
, and
A. R.
Khokhlov
,
J. Phys. II
7
,
543
(
1997
).
43.
W.
Kung
,
P.
González-Mozuelos
, and
M. O.
de la Cruz
,
Soft Matter
6
,
331
(
2010
).
44.
G.
Munaò
,
D.
Costa
,
F.
Sciortino
, and
C.
Caccamo
,
J. Chem. Phys.
134
,
194502
(
2011
).
45.
M.
Tripathy
and
K. S.
Schweizer
,
J. Phys. Chem. B
117
,
373
(
2013
).
46.
N. E.
Valadez-Pérez
,
A. L.
Benavides
,
E.
Schöll-Paschinger
, and
R.
Castañeda-Priego
,
J. Chem. Phys.
137
,
084905
(
2012
).
47.
A. L.
Benavides
and
F.
Gámez
,
J. Chem. Phys.
135
,
134511
(
2011
).
48.
A. L.
Benavides
,
L. A.
Cervantes
, and
J.
Torres
,
J. Phys. Chem. C
111
,
16006
(
2007
).
49.
J. R.
Elliott
and
N. H.
Gray
,
J. Chem. Phys.
123
,
184902
(
2005
).
50.
J.
Cui
and
J. R.
Elliott
,
J. Chem. Phys.
116
,
8625
(
2002
).
51.
G. A.
Chapela
,
L. E.
Scriven
, and
H. T.
Davis
,
J. Chem. Phys.
91
,
4307
(
1989
).
52.
J. A.
Barker
and
D.
Henderson
,
J. Chem. Phys.
47
,
2856
(
1967
).
53.
J. A.
Barker
and
D.
Henderson
,
J. Chem. Phys.
47
,
4714
(
1967
).
54.
J. A.
Barker
and
D.
Henderson
,
Phys. Rev. A
1
,
1266
(
1970
).
55.
A.
Giacometti
,
C.
Gögelein
,
F.
Lado
,
F.
Sciortino
,
S.
Ferrari
, and
G.
Pastore
,
J. Chem. Phys.
140
,
094104
(
2014
).
56.
C.
Gögelein
,
F.
Romano
,
F.
Sciortino
, and
A.
Giacometti
,
J. Chem. Phys.
136
,
094512
(
2012
).
57.
A.
Kovalenko
and
F.
Hirata
,
J. Chem. Phys.
110
,
10095
(
1999
).
58.
A.
Kovalenko
and
F.
Hirata
,
Chem. Phys. Lett.
349
,
496
(
2001
).
59.
D. J.
Tildesley
and
W. B.
Streett
,
Mol. Phys.
41
,
85
(
1980
).
60.
M. S.
Wertheim
,
J. Chem. Phys.
87
,
7323
(
1987
).
61.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulations
(
Academic
,
New York
,
1996
).
62.
T.
Morita
and
K.
Hiroike
,
Prog. Theor. Phys.
23
,
1003
(
1960
).
63.
S. J.
Singer
and
D.
Chandler
,
Mol. Phys.
55
,
621
(
1985
).
64.
L. W.
Salvino
and
J. A.
White
,
J. Chem. Phys.
96
,
4559
(
1992
).
65.
D.
Meeter
and
P.
Wolfe
,
Non-Linear Least Squares
(
University of Wisconsin Computing Center
,
1965
).
66.
D. J.
Kraft
,
J.
Groenewold
, and
W. K.
Kegel
,
Soft Matter
5
,
3823
(
2009
).
You do not currently have access to this content.