We have calculated the isotropic C6 coefficients characterizing the long-range van der Waals interaction between two identical heteronuclear alkali-metal diatomic molecules in the same arbitrary vibrational level of their ground electronic state X1Σ+. We consider the ten species made up of 7Li, 23Na, 39K, 87Rb, and 133Cs. Following our previous work [Lepers et al., Phys. Rev. A 88, 032709 (2013)], we use the sum-over-state formula inherent to the second-order perturbation theory, composed of the contributions from the transitions within the ground state levels, from the transition between ground-state and excited state levels, and from a crossed term. These calculations involve a combination of experimental and quantum-chemical data for potential energy curves and transition dipole moments. We also investigate the case where the two molecules are in different vibrational levels and we show that the Moelwyn-Hughes approximation is valid provided that it is applied for each of the three contributions to the sum-over-state formula. Our results are particularly relevant in the context of inelastic and reactive collisions between ultracold bialkali molecules in deeply bound or in Feshbach levels.

Supplementary Material

You do not currently have access to this content.