We present a refined model for the vapor-liquid-solid growth and crystal structure of Au-catalyzed III-V nanowires, which revisits several assumptions used so far and is capable of describing the transition from mononuclear to polynuclear regime and ultimately to regular atomistic growth. We construct the crystal phase diagrams and calculate the wurtzite percentages, elongation rates, critical sizes, and polynucleation thresholds of Au-catalyzed GaAs nanowires depending on the As flow. We find a non-monotonic dependence of the crystal phase on the group V flow, with the zincblende structure being preferred at low and high group V flows and the wurtzite structure forming at intermediate group V flows. This correlates with most of the available experimental data. Finally, we discuss the atomistic growth picture which yields zincblende crystal structure and should be very advantageous for fabrication of ternary III-V nanowires with well-controlled composition and heterointerfaces.

1.
R. S.
Wagner
and
W. C.
Ellis
,
Appl. Phys. Lett.
4
,
89
(
1964
).
2.
X.
Duan
,
Y.
Huang
,
Y.
Cui
,
J.
Wang
, and
C. M.
Lieber
,
Nature
409
,
66
(
2001
).
3.
P.
Yang
,
R.
Yan
, and
M.
Fardy
,
Nano Lett.
10
,
1529
(
2010
).
4.
V. G.
Dubrovskii
,
Nucleation Theory and Growth of Nanostructures
(
Springer
,
Heidelberg, New York, Dordrecht, London
,
2014
).
5.
D.
Spirkoska
,
J.
Arbiol
,
A.
Gustafsson
,
S.
Conesa-Boj
,
F.
Glas
,
I.
Zardo
,
M.
Heigoldt
,
M. H.
Gass
,
A. L.
Bleloch
,
S.
Estrade
,
M.
Kaniber
,
J.
Rossler
,
F.
Peiro
,
J. R.
Morante
,
G.
Abstreiter
,
L.
Samuelson
, and
A.
Fontcuberta i Morral
,
Phys. Rev. B
80
,
245325
(
2009
).
6.
N.
Akopian
,
G.
Patriarche
,
L.
Liu
,
J. C.
Harmand
, and
V.
Zwiller
,
Nano Lett.
10
,
1198
(
2010
).
7.
K. A.
Dick
,
C.
Thelander
,
L.
Samuelson
, and
P.
Caroff
,
Nano Lett.
10
,
3494
(
2010
).
8.
A.
Fakhr
,
Y. M.
Haddara
, and
R. R.
LaPierre
,
Nanotechnology
21
,
165601
(
2010
).
9.
P.
Krogstrup
,
M. H.
Madsen
,
H.
Wen
,
K.
Miwa
,
J.
Nygård
,
T.
Masamitu
, and
R. K.
Feidenhans
,
Appl. Phys. Lett.
100
,
093103
(
2012
).
10.
D. L.
Dheeraj
,
A. M.
Munshi
,
M.
Scheffler
,
A. T. J.
van Helvoort
,
H.
Weman
, and
B. O.
Fimland
,
Nanotechnology
24
,
015601
(
2013
).
11.
E.
Husanu
,
D.
Ercolani
,
M.
Gemmi
, and
L.
Sorba
,
Nanotechnology
25
,
205601
(
2014
).
12.
A.
Kelrich
,
V. G.
Dubrovskii
,
Y.
Calahorra
,
S.
Cohen
, and
D.
Ritter
,
Nanotechnology
26
,
085303
(
2015
).
13.
S.
Lehmann
,
D.
Jacobsson
,
K.
Deppert
, and
K.
Dick
,
Nano Res.
5
,
470
(
2012
).
14.
S.
Lehmann
,
J.
Wallentin
,
D.
Jacobsson
,
K.
Deppert
, and
K. A.
Dick
,
Nano Lett.
13
,
4099
(
2013
).
15.
S.
Assali
,
I.
Zardo
,
S.
Plissard
,
D.
Kriegner
,
M. A.
Verheijen
,
G.
Bauer
,
A.
Meijerink
,
A.
Belabbes
,
F.
Bechstedt
,
J. E. M.
Haverkort
, and
E. P. A. M.
Bakkers
,
Nano Lett.
13
,
1559
(
2013
).
16.
H. J.
Joyce
,
Q.
Gao
,
H. H.
Tan
,
C.
Jagadish
,
Y.
Kim
,
M. A.
Fickenscher
,
S.
Perera
,
T. B.
Hoang
,
L. M.
Smith
,
H. E.
Jackson
,
J. M.
Yarrison-Rice
,
X.
Zhang
, and
J.
Zou
,
Nano Lett.
9
,
695
(
2009
).
17.
X.
Ren
,
H.
Huang
,
V. G.
Dubrovskii
,
N. V.
Sibirev
,
M. V.
Nazarenko
,
A. D.
Bolshakov
,
X.
Ye
,
Q.
Wang
,
Y.
Huang
,
X.
Zhang
,
J.
Guo
, and
X.
Liu
,
Semicond. Sci. Technol.
26
,
014034
(
2011
).
18.
E.
Gil
,
V. G.
Dubrovskii
,
G.
Avit
,
Y.
André
,
C.
Leroux
,
K.
Lekhal
,
J.
Grecenkov
,
A.
Trassoudaine
,
D.
Castelluci
,
G.
Monier
,
R. M.
Ramdani
,
C.
Robert-Goumet
,
L.
Bideux
,
J. C.
Harmand
, and
F.
Glas
,
Nano Lett.
14
,
3938
(
2014
).
19.
F.
Glas
,
J. C.
Harmand
, and
G.
Patriarche
,
Phys. Rev. Lett.
99
,
146101
(
2007
).
20.
V. G.
Dubrovskii
,
N. V.
Sibirev
,
J. C.
Harmand
, and
F.
Glas
,
Phys. Rev. B
78
,
235301
(
2008
).
21.
J.
Johansson
,
L. S.
Karlsson
,
K. A.
Dick
,
J.
Bolinsson
,
B. A.
Wacaser
,
K.
Deppert
, and
L.
Samuelson
,
Cryst. Growth Des.
9
,
766
(
2009
).
22.
F.
Glas
,
J. Appl. Phys.
108
,
073506
(
2010
).
23.
V. G.
Dubrovskii
,
Appl. Phys. Lett.
104
,
053110
(
2014
).
24.
V. G.
Dubrovskii
and
J.
Grecenkov
,
Cryst. Growth Des.
15
,
340
(
2015
).
25.
F.
Glas
,
M. R.
Ramdani
,
G.
Patriarche
, and
J. C.
Harmand
,
Phys. Rev. B
88
,
195304
(
2013
).
26.
F.
Glas
,
J. C.
Harmand
, and
G.
Patriarche
,
Phys. Rev. Lett.
104
,
135501
(
2010
).
27.
C. Y.
Wen
,
J.
Tersoff
,
K.
Hillerich
,
M. C.
Reuter
,
J. H.
Park
,
S.
Kodambaka
,
E. A.
Stach
, and
F. M.
Ross
,
Phys. Rev. Lett.
107
,
025503
(
2011
).
28.
V. G.
Dubrovskii
,
Phys. Rev. B
87
,
195426
(
2013
).
29.
30.
V. G.
Dubrovskii
and
N. V.
Sibirev
,
Phys. Rev. E
70
,
031604
(
2004
).
31.
D.
Kashchiev
,
Cryst. Growth Des.
6
,
1154
(
2006
).
32.
Y.
André
,
K.
Lekhal
,
P.
Hoggan
,
G.
Avit
,
F.
Cadiz
,
A.
Rowe
,
D.
Paget
,
E.
Petit
,
C.
Leroux
,
A.
Trassoudaine
,
M. R.
Ramdani
,
G.
Monier
,
D.
Colas
,
R.
Ajib
,
D.
Castelluci
, and
E.
Gil
,
J. Chem. Phys.
140
,
194706
(
2014
).
33.
S. L.
Girshick
and
C.-P.
Chiu
,
J. Chem. Phys.
93
,
1273
(
1990
).
34.
S. L.
Girshick
and
C.-P.
Chiu
,
J. Chem. Phys.
94
,
826
(
1991
).
35.
D.
Kashchiev
,
Nucleation: Basic Theory with Applications
(
Butterworth Heinemann
,
Oxford
,
2000
).
36.
D.
Kashchiev
,
J. Chem. Phys.
129
,
164701
(
2008
).
37.
V. G.
Dubrovskii
and
M. V.
Nazarenko
,
J. Chem. Phys.
132
,
114507
(
2010
).
38.
G.
Patriarche
,
F.
Glas
,
M.
Tchernycheva
,
C.
Sartel
,
L.
Largeau
,
J.-C.
Harmand
, and
G. E.
Cirlin
,
Nano Lett.
8
,
1638
(
2008
).
39.
N. V.
Sibirev
,
V. A.
Timofeeva
,
A. D.
Bolshakov
,
M. V.
Nazarenko
, and
V. G.
Dubrovskii
,
Phys. Solid State
52
,
1531
(
2010
).
40.
R. I.
Schawarz
,
Thin Solid Films
66
,
L3
(
1980
).
You do not currently have access to this content.