Mixed phase rutile/anatase catalysts show increased reactivity compared with the pure phases alone. However, the mechanism causing this effect is not fully understood. The electronic properties of the interface and the relative energy of the electron in each phase play a key role in lowering the rate of recombination of electron hole pairs. Using density functional theory and the +U correction, we calculated the bands offsets between the phases taking into account the effect of the interface. Our model included several thousands atoms, and thus is a good representation of an interface between actual nanoparticles. We found rutile to have both higher conduction and valence band offsets than rutile, leading to an accumulation of electrons in the anatase phase accompanied by hole accumulation in the rutile phase. We also probed the electronic structure of our heterostructure and found a gap state caused by electrons localized in undercoordinated Ti atoms which were present within the interfacial region. Interfaces between bulk materials and between exposed surfaces both showed electron trapping at undercoordinated sites. These undercoordinated (typically four) atoms present localized electrons that could enable reduction reactions in the interfacial region, and could explain the increased reactivity of mixed-phase TiO2 photocatalyst materials.

1.
U.
Diebold
,
Surf. Sci. Rep.
48
,
53
(
2003
).
2.
T.
Ohno
,
K.
Sarukawa
,
K.
Tokieda
, and
M.
Matsumura
,
J. Catal.
203
,
82
(
2001
).
3.
M.
Yan
,
F.
Chen
,
J.
Zhang
, and
M.
Anpo
,
J. Phys. Chem. B
109
,
8673
(
2005
).
4.
D.
Hurum
,
A.
Agrios
,
K.
Gray
,
T.
Rajh
, and
M.
Thurnauer
,
J. Phys. Chem. B
107
,
4545
(
2003
).
5.
W.
Li
,
C.
Liu
,
Y.
Zhou
,
Y.
Bai
,
X.
Feng
,
Z.
Yang
,
L.
Lu
,
X.
Lu
, and
K.
Chan
,
J. Phys. Chem. C
112
,
20539
(
2008
).
6.
G.
Li
,
S.
Ciston
,
Z.
Saponjic
,
L.
Chen
,
N.
Dimitrijevic
,
T.
Rajh
, and
K.
Gray
,
J. Catal.
253
,
105
(
2008
).
7.
L.
Shi
and
D.
Weng
,
J. Environ. Sci.
20
,
1263
(
2008
).
8.
K.
Connelly
,
A.
Wahab
, and
H.
Idriss
,
Mater. Renewable Sustainable Energy
1
,
3
(
2012
).
9.
G.
Li
,
N.
Dimitrijevic
,
L.
Chen
,
J.
Nichols
,
T.
Rajh
, and
K.
Gray
,
J. Am. Chem. Soc.
130
,
5402
(
2008
).
10.
A.
Linsebigler
,
G.
Lu
, and
J.
Yates
,
Chem. Rev.
95
,
735
(
1995
).
11.
W.-J.
Yin
,
H.
Tang
,
S.-H.
Wei
,
M. M.
Al-Jassim
,
J.
Turner
, and
Y.
Yan
,
Phys. Rev. B
82
,
45106
(
2010
).
12.
M.
Ni
,
M. K. H.
Leung
,
D. Y. C.
Leung
, and
K.
Sumathy
,
Renewable Sustainable Energy Rev.
11
,
401
(
2007
).
13.
W.
Choi
,
A.
Termin
, and
M. R.
Hoffmann
,
J. Phys. Chem.
98
,
13669
(
1994
).
14.
A.
Sclafani
and
J. M.
Herrmann
,
J. Phys. Chem.
100
,
13655
(
1996
).
15.
T.
Kawahara
,
Y.
Konishi
,
H.
Tada
,
N.
Tohge
,
J.
Nishii
, and
S.
Ito
,
Angew. Chem.
114
,
2935
(
2002
).
16.
M.
Henderson
,
Surf. Sci. Rep.
66
,
185
(
2011
).
17.
G.
Li
,
L.
Chen
,
M. E.
Graham
, and
K. A.
Gray
,
J. Mol. Catal. A: Chem.
275
,
30
(
2007
).
18.
L.
Kavan
,
M.
Grätzel
,
S. E.
Gilbert
,
C.
Klemenz
, and
H. J.
Scheel
,
J. Am. Chem. Soc.
118
,
6716
(
1996
).
19.
P.
Deák
,
B.
Aradi
, and
T.
Frauenheim
,
J. Phys. Chem. C
115
,
3443
(
2011
).
20.
D. O.
Scanlon
,
C. W.
Dunnill
,
J.
Buckeridge
,
S. A.
Shevlin
,
A. J.
Logsdail
,
S. M.
Woodley
,
C. R. A.
Catlow
,
M. J.
Powell
,
R. G.
Palgrave
,
I. P.
Parkin
,
G. W.
Watson
,
T. W.
Keal
,
P.
Sherwood
,
A.
Walsh
, and
A. A.
Sokol
,
Nat. Mater.
12
,
798
(
2013
).
21.
V.
Pfeifer
,
P.
Erhart
,
S.
Li
,
K.
Rachut
,
J.
Morasch
,
J.
Brötz
,
P.
Reckers
,
T.
Mayer
,
S.
Rühle
,
A.
Zaban
,
I. M.
Seró
,
J.
Bisquert
,
W.
Jaegermann
, and
A.
Klein
,
J. Phys. Chem. Lett.
4
,
4182
(
2013
).
22.
Y.
Kho
,
A.
Iwase
, and
W.
Teoh
,
J. Phys. Chem. C
2
,
2821
(
2010
).
23.
K.
Komaguchi
,
H.
Nakano
,
A.
Araki
, and
Y.
Harima
,
Chem. Phys. Lett.
428
,
338
(
2006
).
24.
J.
Zhang
,
Q.
Xu
,
Z.
Feng
,
M.
Li
, and
C.
Li
,
Angew. Chem., Int. Ed. Engl.
47
,
1766
(
2008
).
25.
S.
Leytner
and
J. T.
Hupp
,
Chem. Phys. Lett.
330
,
231
(
2000
).
26.
D. C.
Hurum
,
A. G.
Agrios
,
S. E.
Crist
,
K. A.
Gray
,
T.
Rajh
, and
M. C.
Thurnauer
,
J. Electron Spectrosc. Relat. Phenom.
150
,
155
(
2006
).
27.
J.
Tersoff
,
Phy. Rev. B
30
,
4874
(
1984
).
28.
C. J.
Fall
,
N.
Binggeli
, and
A.
Baldereschi
,
J. Phys.: Condens. Matter
11
,
2689
(
1999
).
29.
A.
Baldereschi
,
S.
Baroni
, and
R.
Resta
,
Phys. Rev. Lett.
61
,
734
(
1988
).
30.
L.
Colombo
,
R.
Resta
, and
S.
Baroni
,
Phys. Rev. B
44
,
5572
(
1991
).
31.
H.-P.
Komsa
,
E.
Arola
,
E.
Larkins
, and
T. T.
Rantala
,
J. Phys.: Condens. Matter
20
,
315004
(
2008
).
32.
B.
Hoffling
,
A.
Schleife
,
F.
Fuchs
,
C.
Rodl
, and
F.
Bechstedt
,
Appl. Phys. Lett.
97
,
032113
(
2010
).
33.
P. W.
Peacock
and
J.
Robertson
,
Phys. Rev. Lett.
92
,
057601
(
2004
).
34.
T.
Sayle
,
C.
Catlow
,
D.
Sayle
,
S.
Parker
, and
J.
Harding
,
Philos. Mag. A
68
,
565
(
1993
).
35.
N. A.
Deskins
,
S.
Kerisit
,
K. M.
Rosso
, and
M.
Dupuis
,
J. Phys. Chem. C
111
,
9290
(
2007
).
36.
M.
Matsui
and
M.
Akaogi
,
Mol. Simul.
6
,
239
(
1991
).
37.
I. T.
Todorov
,
W.
Smith
,
K.
Trachenko
, and
M. T.
Dove
,
Journal of Materials Chemistry
16
,
1911
(
2006
).
38.
J.
VandeVondele
,
M.
Krack
,
F.
Mohamed
,
M.
Parrinello
,
T.
Chassaing
, and
J.
Hutter
,
Comput. Phys. Commun.
167
,
103
(
2005
).
39.
G.
Lippert
,
J.
Hutter
, and
M.
Parrinello
,
Theor. Chem. Acc.
103
,
124
(
1999
).
40.
J.
VandeVondele
and
J.
Hutter
,
J. Chem. Phys.
127
,
114105
(
2007
).
41.
S.
Goedecker
,
M.
Teter
, and
J.
Hutter
,
Phys. Rev. B
54
,
1703
(
1996
).
42.
C.
Hartwigsen
,
S.
Goedecker
, and
J.
Hutter
,
Phys. Rev. B
58
,
3641
(
1998
).
43.
M.
Krack
,
Theor. Chem. Acc.
114
,
145
(
2005
).
44.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
47
,
558
(
1993
).
45.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
49
,
14251
(
1994
).
46.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
,
15
(
1996
).
47.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
48.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
49.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
50.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
51.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
78
,
1396
(
1997
).
52.
M. V.
Ganduglia-Pirovano
,
A.
Hofmann
, and
J.
Sauer
,
Surf. Sci. Rep.
62
,
219
(
2007
).
53.
G.
Pacchioni
,
J. Chem. Phys.
128
,
182505
(
2008
).
54.
S. L.
Dudarev
,
G. A.
Botton
,
S. Y.
Savrasov
,
C. J.
Humphreys
, and
A. P.
Sutton
,
Phys. Rev. B
57
,
1505
(
1998
).
55.
S.
Chrétien
and
H.
Metiu
,
J. Phys. Chem. C
115
,
4696
(
2011
).
56.
M. F.
Camellone
,
P. M.
Kowalski
, and
D.
Marx
,
Phys. Rev. B
84
,
1
(
2011
).
57.
J.
Stausholm-Møller
,
H. H.
Kristoffersen
,
B.
Hinnemann
,
G. K. H.
Madsen
, and
B.
Hammer
,
J. Chem. Phys.
133
,
144708
(
2010
).
58.
P. M.
Kowalski
,
M. F.
Camellone
,
N. N.
Nair
,
B.
Meyer
, and
D.
Marx
,
Phys. Rev. Lett.
105
,
146405
(
2010
).
59.
B. J.
Morgan
and
G. W.
Watson
,
Surf. Sci.
601
,
5034
(
2007
).
60.
T.
Shibuya
,
K.
Yasuoka
,
S.
Mirbt
, and
B.
Sanyal
,
J. Phys.: Condens. Matter
24
,
435504
(
2012
).
61.
E.
Finazzi
,
C.
Di Valentin
,
G.
Pacchioni
, and
A.
Selloni
,
J. Chem. Phys.
129
,
154113
(
2008
).
62.
M. C.
Toroker
,
D. K.
Kanan
,
N.
Alidoust
,
L. Y.
Isseroff
,
P.
Liao
, and
E. A
Carter
,
Phys. Chem. Chem. Phys.
13
,
16644
(
2011
).
63.
M.
Nolan
,
S. D.
Elliott
,
J. S.
Mulley
,
R. A.
Bennett
,
M.
Basham
, and
P.
Mulheran
,
Phys. Rev. B
77
,
235424
(
2008
).
64.
A.
Jedidi
,
A.
Markovits
,
C.
Minot
,
S.
Bouzriba
, and
M.
Abderraba
,
Langmuir
26
,
16232
(
2010
).
65.
C. E.
Patrick
and
F.
Giustino
,
J. Phys. Condens.: Matter
24
,
202201
(
2012
).
66.
B. J.
Morgan
and
G. W.
Watson
,
J. Phys. Chem. C
114
,
2321
(
2010
).
67.
R. L.
Penn
and
J. F.
Banfield
,
American Mineralogist
84
,
871
(
1999
); available at: http://www.minsocam.org/msa/ammin/toc/1999/MJ99.html.
68.
G. H.
Lee
and
J.-M.
Zuo
,
J. Am. Ceram. Soc.
87
,
473
(
2004
).
69.
H.
Zhang
and
J. F.
Banfield
,
J. Phys. Chem. B
104
,
3481
(
2000
).
70.
G.
Li
and
K. A.
Gray
,
Chem. Phys.
339
,
173
(
2007
).
71.
F.
Nunzi
,
E.
Mosconi
,
L.
Storchi
,
E.
Ronca
,
A.
Selloni
,
M.
Gratzel
, and
F.
De Angelis
,
Energy Environ. Sci.
6
,
1221
(
2013
).
72.
J.
Zhang
,
Y.
Hu
,
M.
Matsuoka
,
H.
Yamashita
,
M.
Minagawa
,
H.
Hidaka
, and
M.
Anpo
,
J. Phys. Chem. B
105
,
8395
(
2001
).
73.
T.
Xia
,
N.
Li
,
Y.
Zhang
,
M. B.
Kruger
,
J.
Murowchick
,
A.
Selloni
, and
X.
Chen
,
ACS Appl. Mater. Interfaces
5
,
9883
(
2013
).
74.
J.
Kullgren
,
H. A.
Huy
,
B.
Aradi
,
T.
Frauenheim
, and
P.
Deák
,
Phys. Status Solidi RRL
8
,
566
(
2014
).
75.
W.-K.
Li
,
P.
Hu
,
G.
Lu
, and
X.-Q.
Gong
,
J. Mol. Model.
20
,
2215
(
2014
).
76.
C.
Mitra
,
B.
Lange
,
C.
Freysoldt
, and
J.
Neugebauer
,
Phys. Rev. B
84
,
193304
(
2011
).
77.
C. G.
Van de Walle
,
Phys. Rev. B
39
,
1871
(
1989
).
78.
J.
Kang
,
F.
Wu
,
S.-S.
Li
,
J.-B.
Xia
, and
J.
Li
,
J. Phys. Chem. C
116
,
20765
(
2012
).
79.
C. G.
Van de Walle
and
J.
Neugebauer
,
Nature
423
,
626
(
2003
).
80.
N. A.
Deskins
and
M.
Dupuis
,
J. Phys. Chem. C
113
,
346
(
2009
).
81.
G.-L.
Li
,
W.-X.
Li
, and
C.
Li
,
Phys. Rev. B
82
,
235109
(
2010
).
82.
N. A.
Deskins
and
M.
Dupuis
,
Phys. Rev. B
75
,
195212
(
2007
).
83.
A.
Cordones
and
S.
Leone
,
Chem. Soc. Rev.
42
,
3209
(
2013
).
84.
M.
Posternak
,
A.
Baldereschi
, and
B.
Delley
,
J. Phys. Chem. C
113
,
15862
(
2009
).
You do not currently have access to this content.