Preferential and enantioselective interactions of l-/d-Phenylalanine (l-Phe and d-Phe) and butoxycarbonyl-protected l-/d-Phenylalanine (LPA and DPA) as guest with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (l-DPPC) as host were tapped by using real time Fourier transform infrared reflection absorption spectroscopy (FT-IRRAS). Polarization-modulated FT-IRRAS of DPPC monolayers above the phenylalanine modified subphases depicted fine structure/conformation differences under considerations of controlled 2D surface pressure. Selective molecular recognition of d-enantiomer over l-enantiomer driven by the DPPC head group via H-bonding and electrostatic interactions was evident spectroscopically. Accordingly, binding constants (K) of 145, 346, 28, and 56 M−1 for LPA, DPA, l-Phe, and d-Phe, respectively, were estimated. The real time FT-IRRAS water bands were strictly conformation sensitive. The effect of micro-solvation on the structure and stability of the 1:1 diastereomeric l-lipid⋯, LPA/DPA and l-lipid⋯, (l/d)-Phe adducts was investigated with the aid of Atom-centered Density Matrix Propagation (ADMP), a first principle quantum mechanical molecular dynamics approach. The phosphodiester fragment was the primary site of hydration where specific solvent interactions were simulated through single- and triple- “water-phosphate” interactions, as water cluster’s “tetrahedral dice” to a “trimeric motif” transformation as a partial de-clusterization was evident. Under all the hydration patterns considered in both static and dynamic descriptions of density functional theory, l-lipid/d-amino acid enantiomer adducts continued to be stable structures while in dynamic systems, water rearranged without getting “squeezed-out” in the process of recognition. In spite of the challenging computational realm of this multiscale problem, the ADMP simulated molecular interactions complying with polarized vibrational spectroscopy unraveled a novel route to chiral recognition and interfacial water structure.

1.
L.
Bai
,
S.
Sheeley
, and
J. V.
Sweedler
,
Bioanal. Rev.
1
,
7
(
2009
).
2.
G. C.
Barret
,
Chemistry and Biochemistry of Amino Acids
(
Chapman and Hall
,
New York
,
1985
).
3.
S.
Pathirana
,
W. C.
Neely
,
L. J.
Myers
, and
V.
Vodyanoy
,
J. Am. Chem. Soc.
114
,
1404
(
1992
).
4.
N.
Nandi
,
J. Phys. Chem. A
107
,
4588
(
2003
).
5.
E.
Rogalska
,
S.
Ransac
, and
R.
Verger
,
J. Biol. Chem.
268
,
792
(
1993
).
6.
G.
Brezesinski
and
H.
Möhwald
,
Adv. Colloid Interface Sci.
100
,
563
(
2003
).
7.
M.
Dyck
,
A.
Kerth
,
A.
Blume
, and
M.
Lösche
,
J. Phys. Chem. B
110
,
22152
(
2006
).
8.
K.
Ariga
and
T.
Kunitake
,
Acc. Chem. Res.
31
,
371
(
1998
).
9.
K.
Ariga
,
H.
Ito
,
J. P.
Hill
, and
H.
Tsukube
,
Chem. Soc. Rev.
41
,
5800
(
2012
).
10.
T.
Michinobu
,
S.
Shinoda
,
T.
Nakanishi
,
J. P.
Hill
,
K.
Fujii
,
T. N.
Player
,
H.
Tsukube
, and
K.
Ariga
,
J. Am. Chem. Soc.
128
,
14478
(
2006
).
11.
H.
Kitano
and
H.
Ringsdorf
,
Bull. Chem. Soc. Jpn.
58
,
2826
(
1985
).
12.
M.
Onda
,
K.
Yoshihara
,
H.
Koyano
,
K.
Ariga
, and
T.
Kunitake
,
J. Am. Chem. Soc.
118
,
8524
(
1996
).
13.
M.
Sakurai
,
H.
Tamagawa
,
Y.
Inoue
,
K.
Ariga
, and
T.
Kunitake
,
J. Phys. Chem. B
101
,
4810
(
1997
).
14.
I.
Kuzmenko
,
H.
Rapaport
,
K.
Kjaer
,
J.
Als-Nielsen
,
I.
Weissbuch
, and
M.
Lahav
,
Chem. Rev.
101
,
1659
(
2001
).
15.
T.
Michinobu
,
S.
Shinoda
,
T.
Nakanishi
,
J. P.
Hill
,
K.
Fujii
,
T. N.
Player
,
H.
Tsukube
, and
K.
Ariga
,
Phys. Chem. Chem. Phys.
13
,
4895
(
2011
).
16.
M.
Badis
,
I.
Tomaszkiewicz
,
J. P.
Joly
, and
E.
Rogalska
,
Langmuir
20
,
6259
(
2004
).
17.
J. L.
MacCallum
,
W. F. D.
Bennett
, and
D. P.
Tieleman
,
Biophys. J.
94
,
3393
(
2008
).
18.
J. L.
MacCallum
,
W. F. D.
Bennett
, and
D. P.
Tieleman
,
J. Gen. Physiol.
129
,
371
(
2007
).
19.
H. B.
Bull
and
K.
Breese
,
Arch. Biochem. Biophys.
161
,
665
(
1974
).
20.
M. R.
Watry
and
G. L.
Richmond
,
J. Phys. Chem. B
106
,
12517
(
2002
).
21.
N. K.
Sarangi
and
A.
Patnaik
,
J. Phys. Chem. B
115
,
13551
(
2011
).
22.
N. K.
Sarangi
and
A.
Patnaik
,
ChemPhysChem
13
,
4258
(
2012
).
23.
N. K.
Sarangi
and
A.
Patnaik
,
ChemPlusChem
77
,
898
(
2012
).
24.
B.
Jayaram
and
T.
Jain
,
Annu. Rev. Biophys. Biomol. Struct.
33
,
343
(
2004
).
25.
S. B.
Dixit
and
B.
Jayaram
,
J. Biomol. Struct. Dyn.
16
,
237
(
1998
).
26.
B.
Jayaram
,
A.
Das
, and
N.
Aneja
,
J. Mol. Struct.: THEOCHEM
361
,
249
(
1996
).
27.
B.
Jayaram
,
K. J.
McConnell
,
S. B.
Dixit
, and
D. L.
Beveridge
,
J. Comput. Phys.
151
,
333
(
1999
).
28.
B.
Jayaram
,
K. J.
McConnell
,
S. B.
Dixit
, and
D. L.
Beveridge
,
J. Comput. Chem.
23
,
1
(
2002
).
29.
C. K.
Reddy
,
A.
Das
, and
B.
Jayaram
,
J. Mol. Biol.
314
,
619
(
2002
).
30.
A.
Fernández
,
J. Chem. Phys.
140
,
221102
(
2014
).
31.
H. B.
Schlegel
,
J. M.
Millam
,
S. S.
Iyengar
,
G. A.
Voth
,
A. D.
Daniels
,
G. E.
Scuseria
, and
M. J.
Frisch
,
J. Chem. Phys.
114
,
9758
(
2001
).
32.
S. S.
Iyengar
,
H. B.
Schlegel
,
J. M.
Millam
,
G. A.
Voth
,
G. E.
Scuseria
, and
M. J.
Frisch
,
J. Chem. Phys.
115
,
10291
(
2001
).
33.
H. B.
Schlegel
,
S. S.
Iyengar
,
X.
Li
,
J. M.
Millam
,
G. A.
Voth
,
G. E.
Scuseria
, and
M. J.
Frisch
,
J. Chem. Phys.
117
,
8694
(
2002
).
34.
S. S.
Iyengar
and
M. J.
Frisch
,
J. Chem. Phys.
121
,
5061
(
2004
).
35.
S.
Yamabe
,
W.
Guan
, and
S.
Sakaki
,
Org. Biomol. Chem.
10
,
8007
(
2012
).
36.
N.
Heine
,
M. R.
Fagiani
,
M.
Rossi
,
T.
Wende
,
G.
Berden
,
V.
Blum
, and
K. R.
Asmis
,
J. Am. Chem. Soc.
135
,
8266
(
2013
).
37.
B.
Knudsgaard
,
C.
Petersen
,
J.
Thøgersen
,
S. R.
Keiding
, and
S. J. K.
Jensen
,
Chem. Phys. Lett.
463
,
357
(
2008
).
38.
A. D.
Becke
,
J. Chem. Phys.
96
,
2155
(
1992
).
39.
Y.
Zhao
and
D.
Truhlar
,
Theor. Chem. Acc.
120
,
215
(
2008
).
40.
T.
Lu
and
F.
Chen
,
J. Comp. Chem.
33
,
580
(
2012
).
41.
T. L.
Bahers
,
C.
Adamo
, and
I.
Ciofini
,
J. Chem. Theory Comput.
7
,
2498
(
2011
).
42.
K.
Kim
,
S. Q.
Choi
,
J. A.
Zasadzinski
, and
T. M.
Squires
,
Soft Matter
7
,
7782
(
2011
).
43.
Y.
Ikeura
,
K.
Kurihara
, and
T.
Kunitake
,
J. Am. Chem. Soc.
113
,
7342
(
1991
).
44.
45.
W.
Gan
,
D.
Wu
,
Z.
Zhang
,
R.
Feng
, and
H. F.
Wang
,
J. Chem. Phys.
124
,
114705
(
2006
).
46.
A.
Morita
and
J. T.
Hynes
,
J. Chem. Phys.
258
,
371
(
2000
).
47.
M. B. J.
Meinders
,
G. G. M.
van den Bosch
, and
H. H.
de Jongh
,
Eur. Biophys. J.
30
,
256
(
2001
).
48.
M. R.
Watry
,
T. L.
Tarbuck
, and
G. L.
Richmond
,
J. Phys. Chem. B
107
,
512
(
2003
).
49.
J. A.
Noble
,
C.
Martin
,
H. J.
Fraser
,
P.
Roubin
, and
S.
Coussan
,
J. Phys. Chem. Lett.
5
,
826
(
2014
).
50.
Y. R.
Shen
,
Nature
337
,
519
(
1989
).
51.
J. A.
Mondal
,
S.
Nihonyanagi
,
S.
Yamaguchi
, and
T.
Tahara
,
J. Am. Chem. Soc.
132
,
10656
(
2010
).
52.
L. F.
Scatena
,
M. G.
Brown
, and
G. L.
Richmond
,
Science
292
,
908
(
2001
).
53.
G.
Ma
,
X.
Chen
, and
H. C.
Allen
,
J. Am. Chem. Soc.
129
,
14053
(
2007
).
54.
E. C.
Griffith
and
V.
Vaida
,
J. Am. Chem. Soc.
135
,
710
(
2013
).
55.
F.
Bringezu
,
M.
Majerowicz
,
E.
Maltseva
,
S.
Wen
,
G.
Brezesinski
, and
A. J.
Waring
,
ChemBioChem
8
,
1038
(
2007
).
56.
R. F. W.
Bader
,
Chem. Rev.
91
,
893
(
1991
).
57.
R. F. W.
Bader
,
J. Phys. Chem. A
102
,
7314
(
1998
).
58.
R. F. W.
Bader
,
Acc. Chem. Res.
18
,
9
(
1985
).
59.
E.
Espinosa
,
E.
Molins
, and
C.
Lecomte
,
Chem. Phys. Lett.
285
,
170
(
1998
).
60.
G. L.
Gaines
,
Insoluble Monolayers at Liquid-Gas Interfaces
(
Interscience Publishers
,
New York
,
1966
).
61.
A.
Allerhand
and
P. V. R.
Schleyer
,
J. Am. Chem. Soc.
85
,
1715
(
1963
).
62.
T.
Steiner
and
G. R.
Desiraju
,
Chem. Commun.
1998
(
8
),
891
.
63.
L. J. W.
Shimon
,
M.
Vaida
,
L.
Addadi
,
M.
Lahav
, and
L.
Leiserowitz
,
J. Am. Chem. Soc.
112
,
6215
(
1990
).
64.
T.
Vreven
,
K.
Morokuma
,
Ö.
Farkas
,
H. B.
Schlegel
, and
M. J.
Frisch
,
J. Comput. Chem.
24
,
760
(
2003
).
65.
N.
Rega
,
S. S.
Iyengar
,
G. A.
Voth
,
H. B.
Schlegel
,
T.
Vreven
, and
M. J.
Frisch
,
J. Phys. Chem. B
108
,
4210
(
2004
).
66.
O. V.
Shishkin
,
P.
Dopieralski
,
G. V.
Palamarchuk
, and
Z.
Latajka
,
Chem. Phys. Lett.
490
,
221
(
2010
).
67.
N.
Folliet
,
C.
Roiland
,
S.
Bégu
,
A.
Aubert
,
T.
Mineva
,
A.
Goursot
,
K.
Selvaraj
,
L.
Duma
,
F.
Tielens
,
F.
Mauri
,
G.
Laurent
,
C.
Bonhomme
,
C.
Gervais
,
F.
Babonneau
, and
T.
Azaïs
,
J. Am. Chem. Soc.
133
,
16815
(
2011
).
68.
See supplementary material at http://dx.doi.org/10.1063/1.4905075 for 2D phase dependent parameters and binding constants of l/d-Phe by DPPC and IRRAS spectra. Tabular data for Gaussian deconvoluted IRRAS band assignments for DPPC monolayers on enantiomeric Boc-l/d-Phe and l/d-Phe subphases.

Supplementary Material

You do not currently have access to this content.