A fully atomistic modelling of many biophysical and biochemical processes at biologically relevant length- and time scales is beyond our reach with current computational resources, and one approach to overcome this difficulty is the use of multiscale simulation techniques. In such simulations, when system properties necessitate a boundary between resolutions that falls within the solvent region, one can use an approach such as the Adaptive Resolution Scheme (AdResS), in which solvent particles change their resolution on the fly during the simulation. Here, we apply the existing AdResS methodology to biomolecular systems, simulating a fully atomistic protein with an atomistic hydration shell, solvated in a coarse-grained particle reservoir and heat bath. Using as a test case an aqueous solution of the regulatory protein ubiquitin, we first confirm the validity of the AdResS approach for such systems, via an examination of protein and solvent structural and dynamical properties. We then demonstrate how, in addition to providing a computational speedup, such a multiscale AdResS approach can yield otherwise inaccessible physical insights into biomolecular function. We use our methodology to show that protein structure and dynamics can still be correctly modelled using only a few shells of atomistic water molecules. We also discuss aspects of the AdResS methodology peculiar to biomolecular simulations.

1.
M.
Karplus
and
J. A.
McCammon
,
Annu. Rev. Biochem.
53
,
263
(
1983
).
2.
A.
Krushelnitsky
,
D.
Reichert
, and
K.
Saalwächter
,
Acc. Chem. Res.
46
,
2028
(
2013
).
3.
K. A.
Dill
and
J. L.
MacCallum
,
Science
338
,
1042
(
2012
).
4.
H. I.
Ingólfsson
,
C. A.
Lopez
,
J. J.
Uusitalo
,
D. H.
de Jong
,
S. M.
Gopal
,
X.
Periole
, and
S. J.
Marrink
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
,
225
(
2014
).
5.
K.
Meier
,
A.
Choutko
,
J.
Dolenc
,
A. P.
Eichenberger
,
S.
Riniker
, and
W. F.
van Gunsteren
,
Angew. Chem., Int. Ed.
52
,
2820
(
2013
).
6.
V.
Tozzini
,
Acc. Chem. Res.
43
,
220
(
2010
).
7.
T. A.
Wassenaar
,
H. I.
Ingólfsson
,
M.
Prie
,
S. J.
Marrink
, and
L. V.
Schäfer
,
J. Phys. Chem. B
117
,
3516
(
2013
).
8.
S.
Riniker
,
A. P.
Eichenberger
, and
W. F.
van Gunsteren
,
Eur. Biophys. J.
41
,
647
(
2012
).
9.
Q.
Shi
,
S.
Izvekov
, and
G. A.
Voth
,
J. Phys. Chem. B
110
,
15045
(
2006
).
10.
J.
Kleinjung
and
F.
Fraternali
,
Curr. Opin. Struct. Biol.
25
,
126
(
2014
).
11.
M.
Feig
and
C. L.
Brooks
III
,
Curr. Opin. Struct. Biol.
14
,
217
(
2004
).
12.
A. V.
Predeus
,
S.
Gul
,
S. M.
Gopal
, and
M.
Feig
,
J. Phys. Chem. B
116
,
8610
(
2012
).
13.
V.
Tozzini
,
Curr. Opin. Struct. Biol.
15
,
144
(
2005
).
14.
T.
Bereau
and
M.
Deserno
,
J. Chem. Phys.
130
,
235106
(
2009
).
15.
T. E.
Ouldridge
,
A. A.
Louis
, and
J. P. K.
Doye
,
J. Chem. Phys.
134
,
085101
(
2011
).
16.
J. K.
Sigurdsson
,
F. L.
Brown
, and
P. J.
Atzberger
,
J. Comput. Phys.
252
,
65
(
2013
).
17.
M.
Neri
,
C.
Anselmi
,
M.
Cascella
,
A.
Maritan
, and
P.
Carloni
,
Phys. Rev. Lett.
95
,
218102
(
2005
).
18.
M. R.
Machado
,
P. D.
Dans
, and
S.
Pantano
,
Phys. Chem. Chem. Phys.
13
,
18134
(
2011
).
19.
W.
Han
and
K.
Schulten
,
J. Chem. Theory Comput.
8
,
4413
(
2012
).
20.
J.
Maupetit
,
P.
Tuffery
, and
P.
Derreumaux
,
Proteins: Struct., Funct., Bioinf.
69
,
394
(
2007
).
22.
M.
Leguèbe
,
C.
Nguyen
,
L.
Capece
,
Z.
Hoang
,
A.
Giorgetti
, and
P.
Carloni
,
PLoS One
7
,
e47332
(
2012
).
23.
E.
Villa
,
A.
Balaeff
, and
K.
Schulten
,
Proc. Natl. Acad. Sci. U. S. A.
102
,
6783
(
2005
).
24.
Y.
Levy
and
J. N.
Onuchic
,
Annu. Rev. Biophys. Biomol. Struct.
35
,
389
(
2006
).
25.
A. M.
Klibanov
,
Trends Biotechnol.
15
,
97
(
1997
).
26.
A.
Kitao
,
F.
Hirata
, and
N.
,
Chem. Phys.
158
,
447
(
1991
).
27.
S.
Riniker
,
A. P.
Eichenberger
, and
W. F.
van Gunsteren
,
J. Phys. Chem. B
116
,
8873
(
2012
).
28.
C.
McCabe
and
K. R.
Hadley
,
Mol. Simul.
38
,
671
(
2012
).
29.
J.
Lu
,
Y.
Qiu
,
R.
Baron
, and
V.
Molinero
,
J. Chem. Theory Comput.
10
,
4104
(
2014
).
30.
M. E.
Johnson
,
T.
Head-Gordon
, and
A. A.
Louis
,
J. Chem. Phys.
126
,
144509
(
2007
).
31.
H.
Wang
,
C.
Junghans
, and
K.
Kremer
,
Eur. Phys. J. E
28
,
221
(
2009
).
32.
A. A.
Louis
,
J. Phys.: Condens. Matter
14
,
9187
(
2002
).
33.
F. H.
Stillinger
,
H.
Sakai
, and
S.
Torquato
,
J. Chem. Phys.
117
,
288
(
2002
).
34.
G.
D’Adamo
,
A.
Pelissetto
, and
C.
Pierleoni
,
J. Chem. Phys.
138
,
234107
(
2013
).
35.
M.
Praprotnik
,
L. D.
Site
, and
K.
Kremer
,
J. Chem. Phys.
123
,
224106
(
2005
).
36.
M.
Praprotnik
,
S.
Matysiak
,
L. D.
Site
,
K.
Kremer
, and
C.
Clementi
,
J. Phys.: Condens. Matter
19
,
292201
(
2007
).
37.
S.
Matysiak
,
C.
Clementi
,
M.
Praprotnik
,
K.
Kremer
, and
L. D.
Site
,
J. Chem. Phys.
128
,
024503
(
2008
).
38.
J.
Zavadlav
,
M. N.
Melo
,
S. J.
Marrink
, and
M.
Praprotnik
,
J. Chem. Phys.
140
,
054114
(
2014
).
39.
H.
Wang
,
C.
Hartmann
,
C.
Schütte
, and
L. D.
Site
,
Phys. Rev. X
3
,
011018
(
2013
).
40.
K.
Kreis
,
A. C.
Fogarty
,
K.
Kremer
, and
R.
Potestio
, “
Advantages and challenges in coupling an ideal gas to atomistic models in adaptive resolution simulations
,”
Eur. Phys. J.: Spec. Top.
e-print arXiv:1412.6810 [cond] (in press).
41.
S.
Fritsch
,
S.
Poblete
,
C.
Junghans
,
G.
Ciccotti
,
L. D.
Site
, and
K.
Kremer
,
Phys. Rev. Lett.
108
,
170602
(
2012
).
42.
D.
Reith
,
M.
Pütz
, and
F.
Müller-Plathe
,
J. Comput. Chem.
24
,
1624
(
2003
).
43.
A.
Agarwal
,
H.
Wang
,
C.
Schütte
, and
L. D.
Site
,
J. Chem. Phys.
141
,
034102
(
2014
).
44.
R.
Potestio
,
S.
Fritsch
,
P.
Español
,
R.
Delgado-Buscalioni
,
K.
Kremer
,
R.
Everaers
, and
D.
Donadio
,
Phys. Rev. Lett.
110
,
108301
(
2013
).
45.
M.
Praprotnik
,
L. D.
Site
, and
K.
Kremer
,
Annu. Rev. Phys. Chem.
59
,
545
(
2008
).
46.
C. M.
Pickart
and
M. J.
Eddins
,
Biochim. Biophys. Acta, Mol. Cell Res.
1695
,
55
(
2004
).
47.
S.
Vijay-Kumar
,
C. E.
Bugg
, and
W. J.
Cook
,
J. Mol. Biol.
194
,
531
(
1987
).
48.
Y.
Duan
,
C.
Wu
,
S.
Chowdhury
,
M.
Lee
,
G.
Xiong
,
W.
Zhang
,
R.
Yang
,
P.
Cieplak
,
R.
Luo
,
T.
Lee
,
J.
Caldwell
,
J.
Wang
, and
P.
Kollman
,
J. Comput. Chem.
24
,
1999
(
2003
).
49.
H.
Berendsen
,
J.
Grigera
, and
T.
Straatsma
,
J. Phys. Chem.
91
,
6269
(
1987
).
50.
V.
Rühle
,
C.
Junghans
,
A.
Lukyanov
,
K.
Kremer
, and
D.
Andrienko
,
J. Chem. Theory Comput.
5
,
3211
(
2009
).
51.
J. D.
Halverson
,
T.
Brandes
,
O.
Lenz
,
A.
Arnold
,
S.
Bevc
,
V.
Starchenko
,
K.
Kremer
,
T.
Stuehn
, and
D.
Reith
,
Comput. Phys. Commun.
184
,
1129
(
2013
).
52.

Using the Langevin thermostat in the hybrid and coarse-grained regions, we found it necessary to thermostat at 299 K in order to have a temperature in the atomistic region of 300 K. This is due to the fact that particles which gain excess heat in the hybrid region for the reasons outlined above may not have time to become fully thermalised before they cross into the non-thermostated atomistic region. This artefact does not occur with the use of, e.g., a velocity-rescaling thermostat in the hybrid region. However, thermostats which employ rescaling require the calculation of a global temperature, or at least a temperature over some reasonably large area, which is not straightforward in the AdResS setup. In addition, such thermostats do not sample the canonical ensemble.

53.
L.
Li
,
C.
Li
,
Z.
Zhang
, and
E.
Alexov
,
J. Chem. Theory Comput.
9
,
2126
(
2013
).
54.
S.
Miyamoto
and
P. A.
Kollman
,
J. Comput. Chem.
13
,
952
(
1992
).
55.
G.
Lipari
and
A.
Szabo
,
J. Am. Chem. Soc.
104
,
4546
(
1982
).
56.
E. A.
Cino
,
W.-Y.
Choy
, and
M.
Karttunen
,
J. Chem. Theory Comput.
8
,
2725
(
2012
).
57.
S.
Piana
,
J. L.
Klepeis
, and
D. E.
Shaw
,
Curr. Opin. Struct. Biol.
24
,
98
(
2014
).
58.
P. L.
Freddolino
,
S.
Park
,
B.
Roux
, and
K.
Schulten
,
Biophys. J.
96
,
3772
(
2009
).
59.
J.
Kuriyan
,
G. A.
Petsko
,
R. M.
Levy
, and
M.
Karplus
,
J. Mol. Biol.
190
,
227
(
1986
).
60.
J. B.
Clarage
and
G. N.
Phillips
, Jr.
,
Acta Crystallogr., Sect. D: Biol. Crystallogr.
50
,
24
(
1994
).
61.
A. E.
Garca
,
J. A.
Krumhansl
, and
H.
Frauenfelder
,
Proteins: Struct., Funct., Bioinf.
29
,
153
(
1997
).
62.
R. P.
Joosten
,
T.
Womack
,
G.
Vriend
, and
G.
Bricogne
,
Acta Crystallogr., Sect. D: Biol. Crystallogr.
65
,
176
(
2009
).
63.
R. P.
Joosten
and
G.
Vriend
,
Science
317
,
195
(
2007
).
64.
R. P.
Joosten
,
F.
Long
,
G. N.
Murshudov
, and
A.
Perrakis
,
IUCrJ
1
,
213
(
2014
).
65.
C.
Charlier
,
S. N.
Khan
,
T.
Marquardsen
,
P.
Pelupessy
,
V.
Reiss
,
D.
Sakellariou
,
G.
Bodenhausen
,
F.
Engelke
, and
F.
Ferrage
,
J. Am. Chem. Soc.
135
,
18665
(
2013
).
67.
B.
Halle
,
Philos. Trans. R. Soc., B
359
,
1207
(
2004
).
68.
A.
Mukherjee
,
R.
Lavery
,
B.
Bagchi
, and
J. T.
Hynes
,
J. Am. Chem. Soc.
130
,
9747
(
2008
).
69.
L.
Szyc
,
M.
Yang
,
E. E. E.
Nibbering
, and
T.
Elsaesser
,
Angew. Chem., Int. Ed.
49
,
3598
(
2010
).
70.
71.
D. I.
Svergun
,
S.
Richard
,
M. H. J.
Koch
,
Z.
Sayers
,
S.
Kuprin
, and
G.
Zaccai
,
Proc. Natl. Acad. Sci. U. S. A.
95
,
2267
(
1998
).
72.
F.
Merzel
and
J. C.
Smith
,
Proc. Natl. Acad. Sci. U. S. A.
99
,
5378
(
2002
).
73.
M.
Agarwal
,
H. R.
Kushwaha
, and
C.
Chakravarty
,
J. Phys. Chem. B
114
,
651
(
2010
).
74.
R. H.
Henchman
and
J. A.
McCammon
,
Protein Sci.
11
,
2080
(
2002
).
75.
N.
Bhattacharjee
and
P.
Biswas
,
Biophys. Chem.
158
,
73
(
2011
).
76.
A. R.
Bizzarri
and
S.
Cannistraro
,
Phys. Rev. E
53
,
R3040
(
1996
).
77.
Y.
von Hansen
,
S.
Gekle
, and
R. R.
Netz
,
Phys. Rev. Lett.
111
,
118103
(
2013
).
78.
F.
Sterpone
,
G.
Stirnemann
, and
D.
Laage
,
J. Am. Chem. Soc.
134
,
4116
(
2012
).
79.
C.
Mattea
,
J.
Qvist
, and
B.
Halle
,
Biophys. J.
95
,
2951
(
2008
).
80.
J. T.
King
,
E. J.
Arthur
,
C. L.
Brooks
, and
K. J.
Kubarych
,
J. Phys. Chem. B
116
,
5604
(
2012
).
81.
A. C.
Fogarty
,
E.
Duboue-Dijon
,
F.
Sterpone
,
J. T.
Hynes
, and
D.
Laage
,
Chem. Soc. Rev.
42
,
5672
(
2013
).
82.
G.
Neumayr
,
T.
Rudas
, and
O.
Steinhauser
,
J. Chem. Phys.
133
,
084108
(
2010
).
83.
M. B.
Hamaneh
and
M.
Buck
,
J. Comput. Chem.
30
,
2635
(
2009
).
84.
J. R.
Errington
and
P. G.
Debenedetti
,
Nature
409
,
318
-
321
(
2001
).
85.
G.
Stirnemann
,
F.
Sterpone
, and
D.
Laage
,
J. Phys. Chem. B
115
,
3254
(
2011
).
86.
A. C.
Fogarty
and
D.
Laage
,
J. Phys. Chem. B
118
,
7715
(
2014
).
87.
R.
Ludwig
,
F.
Weinhold
, and
T. C.
Farrar
,
J. Chem. Phys.
103
,
6941
(
1995
).
88.
J.
van der Maarel
,
D.
Lankhorst
,
J.
de Bleijser
, and
J.
Leyte
,
Chem. Phys. Lett.
122
,
541
(
1985
).
89.
D.
Lankhorst
,
J.
Schriever
, and
J. C.
Leyte
,
Ber. Bunsenges. Phys. Chem.
86
,
215
(
1982
).
90.
D.
Smith
and
J.
Powles
,
Mol. Phys.
10
,
451
(
1966
).
91.
D.
Laage
and
J. T.
Hynes
,
J. Phys. Chem. B
112
,
14230
(
2008
).
92.
P. J.
Rossky
and
M.
Karplus
,
J. Am. Chem. Soc.
101
,
1913
(
1979
).
93.
M.
Marchi
,
F.
Sterpone
, and
M.
Ceccarelli
,
J. Am. Chem. Soc.
124
,
6787
(
2002
).
94.
D. R.
Martin
and
D. V.
Matyushov
,
J. Chem. Phys.
141
,
22D501
(
2014
).
95.
B.
Born
,
S. J.
Kim
,
S.
Ebbinghaus
,
M.
Gruebele
, and
M.
Havenith
,
Faraday Discuss.
141
,
161
(
2009
).
96.
K.
Meister
,
S.
Ebbinghaus
,
Y.
Xu
,
J. G.
Duman
,
A.
DeVries
,
M.
Gruebele
,
D. M.
Leitner
, and
M.
Havenith
,
Proc. Natl. Acad. Sci. U. S. A.
110
,
1617
(
2013
).
97.
M.
Heyden
,
J. Chem. Phys.
141
,
22D509
(
2014
).
98.
M.
Levitt
and
R.
Sharon
,
Proc. Natl. Acad. Sci. U. S. A.
85
,
7557
(
1988
).
99.
P. J.
Steinbach
and
B. R.
Brooks
,
Proc. Natl. Acad. Sci. U. S. A.
90
,
9135
(
1993
).
100.
S.
Fritsch
,
C.
Junghans
, and
K.
Kremer
,
J. Chem. Theory Comput.
8
,
398
(
2012
).
101.
V.
Kurkal
,
R.
Daniel
,
J. L.
Finney
,
M.
Tehei
,
R.
Dunn
, and
J. C.
Smith
,
Biophys. J.
89
,
1282
(
2005
).
102.
M.
Norin
,
F.
Haeffner
,
K.
Hult
, and
O.
Edholm
,
Biophys. J.
67
,
548
(
1994
).
103.
R.
Wedberg
,
J.
Abildskov
, and
G. H.
Peters
,
J. Phys. Chem. B
116
,
2575
(
2012
).
104.
R.
Sankararamakrishnan
,
K.
Konvicka
,
E. L.
Mehler
, and
H.
Weinstein
,
Int. J. Quantum Chem.
77
,
174
(
2000
).
105.
D.
Beglov
and
B.
Roux
,
Biopolymers
35
,
171
(
1995
).
106.
V.
Lounnas
,
S. K.
Lüdemann
, and
R. C.
Wade
,
Biophys. Chem.
78
,
157
(
1999
).
107.
D.
Mukherji
and
K.
Kremer
,
Macromolecules
46
,
9158
(
2013
).
108.
J. A.
Wagoner
and
V. S.
Pande
,
J. Chem. Phys.
139
,
234114
(
2013
).
109.
D.
Alexeev
,
S. M.
Bury
,
M. A.
Turner
,
O. M.
Ogunjobi
,
T. W.
Muir
,
R.
Ramage
, and
L.
Sawyer
,
Biochem. J.
299
,
159
(
1994
), http://www.biochemj.org/bj/299/bj2990159.htm.
110.
D. M.
Schneider
,
M. J.
Dellwo
, and
A. J.
Wand
,
Biochemistry
31
,
3645
(
1992
).
You do not currently have access to this content.