Femtosecond-laser pulse driven non-adiabatic spectroscopy and dynamics in molecular and condensed phase systems continue to be a challenge for theoretical modelling. One of the main obstacles is the “curse of dimensionality” encountered in non-adiabatic, exact wavepacket propagation. A possible route towards treating complex molecular systems is via semiclassical surface-hopping schemes, in particular if they account not only for non-adiabatic post-excitation dynamics but also for the initial optical excitation. One such approach, based on initial condition filtering, will be put forward in what follows. As a simple test case which can be compared with exact wavepacket dynamics, we investigate the influence of the different parameters determining the shape of a laser pulse (e.g., its finite width and a possible chirp) on the predissociation dynamics of a NaI molecule, upon photoexcitation of the A(0+) state. The finite-pulse effects are mapped into the initial conditions for semiclassical surface-hopping simulations. The simulated surface-hopping diabatic populations are in qualitative agreement with the quantum mechanical results, especially concerning the subpicosend photoinduced dynamics, the main deviations being the relative delay of the non-adiabatic transitions in the semiclassical picture. Likewise, these differences in the time-dependent electronic populations calculated via the semiclassical and the quantum methods are found to have a mild influence on the overall probability density distribution. As a result, the branching ratios between the bound and the dissociative reaction channels and the time-evolution of the molecular wavepacket predicted by the semiclassical method agree with those computed using quantum wavepacket propagation. Implications for more challenging molecular systems are given.

1.
A. H.
Zewail
,
Femtochemistry: Ultrafast Dynamics of the Chemical Bond
,
World Scientific Series in 20th Century Chemistry
(
World Scientific
,
Singapore
,
1994
), Vol.
3
.
2.
Analysis and Control of Ultrafast Phtoinduced Reactions
,
Springer Series in Chemical Physics
Vol.
87
, edited by
O.
Kühn
and
L.
Wöste
(
Springer
,
Berlin, Heidelberg, New York
,
2007
).
3.
Q.
Shi
and
E.
Geva
,
J. Chem. Phys.
118
,
8173
(
2003
).
4.
H.
Waalkens
,
R.
Schubert
, and
S.
Wiggins
,
Nonlinearity
21
,
R1
(
2008
).
5.
W.
Arbelo-González
,
L.
Bonnet
, and
A.
García-Vela
,
Phys. Chem. Chem. Phys.
13
,
8690
(
2011
).
6.
L.
Bonnet
and
J.-C.
Rayez
,
Chem. Phys. Lett.
397
,
106
(
2004
).
7.
A. W.
Jasper
,
B. K.
Kendrick
,
C. A.
Mead
, and
D. G.
Truhlar
, in
Modern Trends in Chemical Reaction Dynamics, Part I
, edited by
K. P.
Liu
and
X. M.
Yang
(
World Scientific
,
Singapore
,
2004
).
8.
J.
Tully
,
J. Chem. Phys.
93
,
1061
(
1990
).
9.
S. H.
Schiffer
and
J. C.
Tully
,
J. Chem. Phys.
101
,
4657
(
1994
).
10.
H.-D.
Meyer
and
W. H.
Miller
,
J. Chem. Phys.
70
,
3214
(
1979
).
11.
M.
Amarouche
,
F. X.
Gadea
, and
J.
Durup
,
Chem. Phys.
130
,
145
(
1989
).
12.
A.
García-Vela
,
R. B.
Gerber
, and
D. G.
Imre
,
J. Chem. Phys.
97
,
7242
(
1992
).
13.
H.
Wang
,
M.
Thoss
, and
W. H.
Miller
,
J. Chem. Phys.
115
,
2979
(
2001
).
14.
T. D.
Rose
,
M. J.
Rosker
, and
A. H.
Zewail
,
J. Chem. Phys.
88
,
6672
(
1988
).
15.
M. J.
Rosker
,
T. S.
Rose
, and
A. H.
Zewail
,
Chem. Phys. Lett.
146
,
175
(
1988
).
16.
P.
Cong
,
G.
Roberts
,
J. L.
Herek
,
A.
Mohkatari
, and
A.
Zewail
,
J. Chem. Phys.
100
,
7832
(
1996
).
17.
C.
Jouvet
,
S.
Martrenchard
,
D.
Solgadi
,
C.
Dedonder-Lardeux
,
M.
Mons
,
G.
Grégoire
,
I.
Dimicoli
,
F.
Piuzzi
,
J. P.
Visticot
,
J. M.
Mestdagh
,
P.
D’Oliveira
,
P.
Meynadier
, and
M.
Perdrix
,
J. Phys. Chem.
101
,
2555
(
1997
).
18.
G.
Grégoire
,
M.
Mons
,
I.
Dimicoli
,
F.
Piuzzi
,
E.
Charron
,
C.
Dedonder-Lardeux
,
C.
Jouvet
,
S.
Martrenchard
,
D.
Solgadi
, and
A.
Suzor-Weiner
,
Eur. Phys. J. D
1
,
187
(
1998
).
19.
H.
Dietz
and
V.
Engel
,
Chem. Phys. Lett.
255
,
258
(
1996
).
20.
Y.
Liu
,
Y.
Liu
, and
Q.
Gong
,
Eur. Phys. Lett.
101
,
68006
(
2013
).
21.
R.
Mitrić
,
J.
Petersen
, and
V.
Bonac̆ić-Koutecký
,
Phys. Rev. A
79
,
053416
(
2009
).
22.
R.
Mitrić
,
J.
Petersen
,
M.
Wohlgemuth
,
U.
Werner
, and
V.
Bonac̆ić-Koutecký
,
Phys. Chem. Chem. Phys.
13
,
8690
(
2011
).
23.
M.
Ritcher
,
P.
Marquetand
,
J.
González-Vázquez
,
I.
Sola
, and
L.
González
,
J. Chem. Theory Comput.
7
,
1253
(
2011
).
24.
P.
Marquetand
,
M.
Ritcher
,
J.
González-Vázquez
,
I.
Sola
, and
L.
González
,
Faraday Discuss.
153
,
261
(
2011
).
25.
B. F. E.
Curchod
,
T. J.
Penfold
,
U.
Röthlisberger
, and
I.
Tavernelli
,
CHIMIA Int. J. Chem.
67
,
218
(
2013
).
26.
R.
Tempelaar
,
C. P.
van der Vegte
,
J.
Knoester
, and
T. L. C.
Jansen
,
J. Chem. Phys.
138
,
164106
(
2013
).
27.
T.
Zimmermann
and
J.
Vaníc̆ek
,
J. Chem. Phys.
141
,
134102
(
2014
).
28.
A. S.
Petit
and
J. E.
Subotnik
,
J. Chem. Phys.
141
,
154108
(
2014
).
29.
M.
Ben-Nun
,
J.
Quenneville
, and
T. J.
Martínez
,
J. Phys. Chem. A
104
,
5161
(
2000
).
30.
B. G.
Levine
and
T. J.
Martnez
,
Annu. Rev. Phys. Chem.
58
,
613
(
2007
).
31.
X.
Chen
and
V. S.
Batista
,
J. Chem. Phys.
125
,
124313
(
2006
).
32.
X.
Chen
and
V. S.
Batista
,
J. Photochem. Photobiol., A
190
,
274
(
2007
).
33.
M.
Barbatti
,
G.
Granucci
,
M.
Persico
,
M.
Ruckenbauer
,
M.
Vazdar
,
M.
Eckert-Maksić
, and
H.
Lischka
,
J. Photochem. Photobiol., A
190
,
228
(
2007
).
34.
M.
Barbatti
,
M.
Ruckenbauer
,
F.
Plasser
,
J.
Pittner
,
G.
Granucci
,
M.
Persico
, and
H.
Lischka
,
WIREs: Comput. Mol. Sci.
4
,
26
(
2014
).
35.
C.
Meier
and
V.
Engel
,
Phys. Chem. Chem. Phys.
4
,
5014
(
2002
).
36.
V.
Engel
and
H.
Metiu
,
J. Chem. Phys.
90
,
6116
(
1989
).
37.
E.
Charron
and
A.
Suzor-Weiner
,
J. Chem. Phys.
108
,
3922
(
1998
).
38.
H.
Trotter
,
Proc. Am. Math. Soc.
10
,
545
(
1959
).
39.
M. D.
Feit
,
J. A.
Fleck
, and
A.
Steiger
,
J. Comput. Phys.
47
,
412
(
1982
).
40.
G.
Delgado-Barrio
,
A. M.
Cortina
,
A.
Varadt
,
P.
Mareca
,
P.
Villarrreal
, and
S.
Miret-Artes
,
J. Comput. Chem.
7
,
208
(
1986
).
41.
W. H.
Press
,
S. A.
Teukolsky
,
W. T.
Vetterling
, and
B. P.
Flannery
,
Numerical Recipes in Fortran 90
, 2nd ed. (
Cambridge University Press
,
1996
).
42.
P.
Huo
and
D. F.
Coker
,
J. Chem. Phys.
137
,
22A535
(
2012
).
43.
F. F.
Carvalho
,
M. E.
Bouduban
,
B. F. E.
Curchod
, and
I.
Tavernelli
,
Entropy
16
,
62
(
2014
).
44.
J. C.
Tully
,
Faraday Discuss.
110
,
407
(
1998
).
45.
A. W.
Jasper
,
C.
Zhu
,
S.
Nangia
, and
D. G.
Truhlar
,
Faraday Discuss.
127
,
1
(
2004
).
46.
J. P.
Malhado
,
M. J.
Bearpark
, and
J. T.
Hynes
,
Front. Chem.
2
,
97
(
2014
).
47.
J. Y.
Fang
and
S.
Hammes-Schiffer
,
J. Phys. Chem. A
103
,
9399
(
1999
).
48.
B. R.
Landry
and
J. E.
Subotnik
,
J. Chem. Phys.
135
,
191101
(
2011
).
49.
A.
Donoso
and
C. C.
Martens
,
J. Phys. Chem. A
102
,
4291
(
1998
).
50.
Y.-C.
Shen
and
J. A.
Cina
,
J. Chem. Phys.
110
,
9793
(
1999
).
51.
U.
Müller
and
G.
Stock
,
J. Chem. Phys.
107
,
6230
(
1997
).
52.
D. F.
Coker
and
L.
Xiao
,
J. Chem. Phys.
102
,
496
(
1995
).
53.
A. W.
Jasper
and
D. G.
Truhlar
,
Chem. Phys. Lett.
369
,
60
(
2003
).
54.
A.
Jasper
,
S.
Stechmann
, and
D.
Truhlar
,
J. Chem. Phys.
116
,
5424
(
2002
).
55.
A. W.
Jasper
,
M. D.
Hack
, and
D. G.
Truhlar
,
J. Chem. Phys.
115
,
1804
(
2001
).
56.
E.
Tapavicza
,
I.
Tavernelli
,
U.
Rothlisberger
,
C.
Filippi
, and
M. E.
Casida
,
J. Chem. Phys.
129
,
124108
(
2008
).
57.
U.
Werner
,
R.
Mitrić
,
T.
Suzuki
, and
V.
Bonac̆ić-Koutecký
,
Chem. Phys.
349
,
319
(
2008
).
58.
M.
Vazdar
,
M.
Eckert-Maksić
,
M.
Barbatti
, and
H.
Lischka
,
Mol. Phys.
107
,
845
(
2009
).
59.
M.
Lax
,
J. Chem. Phys.
20
,
1752
(
1952
).
60.
M. F.
Kling
,
P.
von den Hoff
,
I.
Znakovskaya
, and
R.
Vivie-Riedle
,
Phys. Chem. Chem. Phys.
15
,
9448
(
2013
).
You do not currently have access to this content.