The conventional Nosé-Hoover type deterministic thermostat scheme for controlling temperature by configurational variables (Braga-Travis (BT) thermostat) is non-ergodic for systems with a few degrees of freedom. While for the original Nosé-Hoover kinetic thermostat ergodicity has been achieved by controlling the higher order moments of kinetic energy, the issues of nonergodicity of BT thermostat persists. In this paper, we introduce two new measures of configurational temperature (second and third order) based on the generalized temperature-curvature relationship and obtain a family of deterministic thermostatting schemes by selectively (and simultaneously) controlling the different orders of temperatures through pseudo-friction terms. The ergodic characteristics of the proposed thermostats are tested using a single harmonic oscillator through statistical (normality of joint distributions at different Poincare sections) as well as dynamical tests (difference of the minimum and maximum largest Lyapunov exponent). Our results indicate that simultaneously controlling the first and the second order configurational temperatures (C1,2 thermostat) is sufficient to make the dynamics ergodic. A 2000 particle Lennard-Jones system is subjected to (i) equilibrium and (ii) sudden temperature change under BT and C1,2 thermostatting schemes. The C1,2 thermostat is found to be more robust than the BT thermostat without increasing computational costs.

1.
W. G.
Hoover
,
A. J. C.
Ladd
, and
B.
Moran
,
Phys. Rev. Lett.
48
,
1818
(
1982
).
2.
D. J.
Evans
,
J. Chem. Phys.
78
,
3297
(
1983
).
3.
D. J.
Evans
,
W. G.
Hoover
,
B. H.
Failor
,
B.
Moran
, and
A. J. C.
Ladd
,
Phys. Rev. A
28
,
1016
(
1983
).
4.
L. V.
Woodcock
,
Chem. Phys. Lett.
10
,
257
(
1971
).
5.
S.
Nosé
,
J. Chem. Phys.
81
,
511
(
1984
).
6.
W. G.
Hoover
,
Phys. Rev. A
31
,
1695
(
1985
).
7.
G. J.
Martyna
,
M. L.
Klein
, and
M.
Tuckerman
,
J. Chem. Phys.
97
,
2635
(
1992
).
8.
W. G.
Hoover
and
B. L.
Holian
,
Phys. Lett. A
211
,
253
(
1996
).
9.
P. K.
Patra
and
B.
Bhattacharya
,
J. Chem. Phys.
140
,
064106
(
2014
).
10.
C.
Braga
and
K. P.
Travis
,
J. Chem. Phys.
123
,
134101
(
2005
).
11.
H. C.
Andersen
,
J. Chem. Phys.
72
,
2384
(
1980
).
12.
G. S.
Grest
and
K.
Kremer
,
Phys. Rev. A
33
,
3628
(
1986
).
13.
C. P.
Lowe
,
Europhys. Lett.
47
,
145
(
1999
).
14.
S. D.
Stoyanov
and
R. D.
Groot
,
J. Chem. Phys.
122
,
114112
(
2005
).
15.
J. J.
Erpenbeck
,
Phys. Rev. Lett.
52
,
1333
(
1984
).
16.
D. J.
Evans
and
G. P.
Morriss
,
Phys. Rev. Lett.
56
,
2172
(
1986
).
17.
A.
Baranyai
,
D. J.
Evans
, and
P. J.
Daivis
,
Phys. Rev. A
46
,
7593
(
1992
).
18.
B. D.
Todd
and
D. J.
Evans
,
Phys. Rev. E
55
,
2800
(
1997
).
19.
G.
Ayton
,
O. G.
Jepps
, and
D. J.
Evans
,
Mol. Phys.
96
,
915
(
1999
).
20.
B. D.
Butler
,
G.
Ayton
,
O. G.
Jepps
, and
D. J.
Evans
,
J. Chem. Phys.
109
,
6519
(
1998
).
21.
O. G.
Jepps
,
G.
Ayton
, and
D. J.
Evans
,
Phys. Rev. E
62
,
4757
(
2000
).
22.
J.
Delhommelle
and
D. J.
Evans
,
Mol. Phys.
99
,
1825
(
2001
).
23.
K. P.
Travis
and
C.
Braga
,
J. Chem. Phys.
128
,
014111
(
2008
).
24.
A.
Samoletov
,
C.
Dettmann
, and
M. J.
Chaplain
,
J. Stat. Phys.
128
,
1321
(
2007
).
25.
S.
Nosé
,
Prog. Theor. Phys. Suppl.
103
,
1
(
1991
).
26.
H. A.
Posch
,
W. G.
Hoover
, and
F. J.
Vesely
,
Phys. Rev. A
33
,
4253
(
1986
).
27.
P. K.
Patra
and
B.
Bhattacharya
,
Phys. Rev. E
90
,
043304
(
2014
).
28.
W. G.
Hoover
and
O.
Kum
,
Phys. Rev. E
56
,
5517
(
1997
).
29.
A. C.
Brańka
,
Phys. Rev. E
61
,
4769
(
2000
).
30.
P. K.
Patra
,
J. C.
Sprott
,
W. G.
Hoover
, and
C. G.
Hoover
, “
Deterministic time-reversible thermostats: chaos, ergodicity, and the zeroth law of thermodynamics
,”
Mol. Phys.
(published online).
31.
J.
Jellinek
and
R. S.
Berry
,
Phys. Rev. A
40
,
2816
(
1989
).
32.
W. G.
Hoover
,
Computational Statistical Mechanics
(
Elsevier
,
Amsterdam
,
1991
).
33.
H.
Posch
and
W. G.
Hoover
,
Phys. Rev. E
55
,
6803
(
1997
).
34.
J. N.
Bright
,
D. J.
Evans
, and
D. J.
Searles
,
J. Chem. Phys.
122
,
194106
(
2005
).
35.
R.
Klages
, “
Microscopic chaos and transport in thermostated dynamical systems
,” preprint arXiv:nlin/0309069 (
2003
).
36.
P. J.
Daivis
,
B. A.
Dalton
, and
T.
Morishita
,
Phys. Rev. E
86
,
056707
(
2012
).
You do not currently have access to this content.