Nowadays, it is well established that the physical properties of confined liquids strongly differ from those in bulk phase. While dynamical and structural properties were strongly explored, dielectric properties are poorly studied despite their importance in the understanding and the modelling of molecular mechanism in a number of nano-applications such as nanofluidics, nanofiltration, and nanomedicine. Among them, the dielectric permittivity is probably one of the most important. The lack of knowledge about it strongly limits our ability to model fluid-material interactions and more generally our understanding of the behaviour of confined fluids. Recently, the dielectric permittivity of confined water in silica, Metal Organic Frameworks, and graphene materials was found to be slightly higher than the permittivity of water in bulk phase. In this work, the permittivity of water and dichloromethane confined in carbon nanotubes was predicted by means of molecular dynamics simulations. The static dielectric constant was found to be 700, i.e., 10-fold higher than the bulk value. This superpermittivity has, for origin, the excluded volume and the presence of an unconfined direction leading to a pre-orientation of water molecules close to the pore wall and an increase in dipolar fluctuations.

1.
C.
Alba-Simionesco
,
B.
Coasne
,
G.
Dosseh
,
G.
Dudziak
,
K.
Gubbins
,
R.
Radhakrishnan
, and
M.
Sliwinska-Bartkowiak
,
J. Phys.: Condens. Matter
18
,
R15
(
2006
).
2.
A.
Verdaguer
,
G.
Sacha
,
H.
Bluhm
, and
M.
Salmeron
,
Chem. Rev.
106
,
1478
(
2006
).
3.
H.
Stanley
,
Z. Phys. Chem.
223
,
939
(
2009
).
4.
D.
Pana
,
L.
Spanua
,
B.
Harrison
,
D.-A.
Sverjensky
, and
G.
Galli
,
Proc. Natl. Acad. Sci. U. S. A.
110
,
6646
(
2013
).
5.
M.
Sharma
,
R.
Resta
, and
R.
Car
,
Phys. Rev. Lett.
98
,
247401
(
2007
).
6.
R.
Renou
,
M.
Ding
,
H.
Zhu
,
A.
Szymczyk
,
P.
Malfreyt
, and
A.
Ghoufi
,
J. Phys. Chem. B
118
,
3931
(
2014
).
7.
S.
Xu
,
G.
Simmons
,
T.
Mahadevan
,
G.
Scherer
,
S.
Garofalini
, and
C.
Pacheco
,
Langmuir
25
,
5084
(
2009
).
8.
K.
Falk
,
F. S. L.
Joly
,
R. R.
Netz
, and
L.
Bocquet
,
Nano Lett.
10
,
4067
(
2010
).
9.
M.
Majumder
,
N.
Chopra
,
R.
Andrews
, and
B.
Hinds
,
Nature
438
,
44
(
2005
).
11.
M.
Whitby
,
L.
Cagnon
,
M.
Thanou
, and
N.
Quirke
,
Nano Lett.
8
,
2632
(
2008
).
12.
G.
Tocci
,
L.
Joly
, and
A.
Michaelides
,
Nano Lett.
14
,
6872
(
2014
).
13.
D.
Cohen-Tanugi
and
J.
Grossman
,
Nano Lett.
12
,
3602
(
2012
).
14.
D.
Cohen-Tanugi
and
J.
Grossman
,
Nano Lett.
14
,
6171
(
2014
).
15.
A.
Szymczyk
,
M.
Shai
,
P.
Fievet
, and
A.
Vidonne
,
Langmuir
22
,
3910
(
2006
).
16.
A.
Szymczyk
,
N.
Fatin-Rouge
, and
P.
Fievet
,
J. Colloid Interface Sci.
309
,
245
(
2007
).
17.
Y.
Lin
,
J.
Shiomi
,
S.
Maruyama
, and
G.
Amberg
,
Phys. Rev. B
80
,
045419
(
2009
).
18.
F.
Mikami
,
K.
Matsuda
,
H.
Kataura
, and
Y.
Maniwa
,
ACS Nano
3
,
1279
(
2009
).
19.
W.
Qi
,
J.
Chen
,
X.
Lei
,
B.
Song
, and
H.
Fang
,
J. Phys. Chem. B
117
,
7967
(
2013
).
20.
C.
Zhang
,
F.
Gygi
, and
G.
Galli
,
J. Phys. Chem. Lett.
4
,
2477
(
2013
).
21.
D. J.
Bonthuis
,
S.
Gekle
, and
R. R.
Netz
,
Phys. Rev. Lett.
107
,
166102
(
2011
).
22.
H.
Zhu
,
A.
Ghoufi
,
A.
Szymczyk
,
B.
Balannec
, and
D.
Morineau
,
Phys. Rev. Lett.
109
,
107801
(
2013
).
23.
A.
Ghoufi
,
A.
Szymczyk
,
R.
Renou
, and
M.
Ding
,
EPL
99
,
37008
(
2012
).
24.
H.
Zhu
,
A.
Ghoufi
,
A.
Szymczyk
,
B.
Balannec
, and
D.
Morineau
,
Phys. Rev. Lett.
111
,
089802
(
2013
).
25.
R.
Renou
,
A.
Ghoufi
,
A.
Szymczyk
,
H.
Zhu
,
J.-C.
Neyt
, and
P.
Malfreyt
,
J. Phys. Chem. C
117
,
11017
(
2013
).
26.
R.
Renou
,
A.
Szymczyk
,
G.
Maurin
, and
A.
Ghoufi
,
Mol. Simul.
41
,
483
(
2014
).
27.
D.
Bonthuis
,
S.
Gekle
, and
R.
Netz
,
Langmuir
28
,
7679
(
2012
).
28.
H.-B.
Cui
,
K.
Takahashi
,
Y.
Okano
,
H.
Kobayashi
,
Z.
Wang
, and
A.
Kobayashi
,
Angew. Chem.
117
,
6666
(
2005
).
29.
B.
Zhou
,
A.
Kobayashi
,
H.-B.
Cui
,
L.-S.
Long
,
H.
Fujimori
, and
H.
Kobayashi
,
J. Am. Chem. Soc.
133
,
5736
(
2011
).
30.
T.
Werder
,
J.
Walther
,
R.
Halicioglu
,
T.
Halicioglu
, and
P.
Koumoutsakos
,
J. Phys. Chem. B
107
,
1345
(
2003
).
31.
W.
Jorgensen
,
J.
Madura
, and
C.
Swenson
,
J. Am. Chem. Soc.
106
,
6638
(
1984
).
32.
M.
Ferrario
and
M.
Evans
,
Chem. Phys.
72
,
141
(
1982
).
33.
T. R.
Forester
and
W.
Smith
,
DLPOLY, CCP5 Program Library
(
Daresbury Laboratory
,
UK
,
2014
).
34.
35.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Oxford
,
1987
).
36.
V.
Ballenegger
and
J.-P.
Hansen
,
J. Chem. Phys.
122
,
114711
(
2005
).
37.
See supplementary material at http://dx.doi.org/10.1063/1.4921043 for radial profiles of density and axial dielectric permittivity of confined water for various thicknesses of cylindrical shell.
38.
A.
Ghoufi
,
I.
Hureau
,
D.
Morineau
,
R.
Renou
, and
A.
Szymczyk
,
J. Phys. Chem. C
117
,
15203
(
2013
).
39.
B.
Corry
,
J. Phys. Chem. B
112
,
1427
(
2008
).
40.
W.-F.
Chan
,
H.-Y.
Chen
,
A.
Surapathi
,
M. G.
Taylor
,
X.
Shao
,
E.
Marand
, and
J.
Johnson
,
ACS Nano
7
,
5308
(
2013
).

Supplementary Material

You do not currently have access to this content.