Small metal clusters exhibit unique size and morphology dependent catalytic activity. The search for alternate minimum energy pathways and catalysts to transform methane to more useful chemicals and carbon nanomaterials led us to investigate collision induced dissociation of methane on small Cu clusters. We report here for the first time, the free energy barriers for the collision induced activation, dissociation, and coupling of methane on small Cu clusters (Cun where n = 2–12) using ab initio molecular dynamics and metadynamics simulations. The collision induced activation of the stretching and bending vibrations of methane significantly reduces the free energy barrier for its dissociation. Increase in the cluster size reduces the barrier for dissociation of methane due to the corresponding increase in delocalisation of electron density within the cluster, as demonstrated using the electron localisation function topology analysis. This enables higher probability of favourable alignment of the C–H stretching vibration of methane towards regions of high electron density within the cluster and makes higher number of sites available for the chemisorption of CH3 and H upon dissociation. These characteristics contribute in lowering the barrier for dissociation of methane. Distortion and reorganisation of cluster geometry due to high temperature collision dynamics disturb electron delocalisation within them and increase the barrier for dissociation. Coupling reactions of CHx (x = 1–3) species and recombination of H with CHx have free energy barriers significantly lower than complete dehydrogenation of methane to carbon. Thus, competition favours the former reactions at high hydrogen saturation on the clusters.

1.
P.
Wu
,
W.
Zhang
,
Z.
Li
, and
J.
Yang
,
Small
10
,
2136
(
2014
).
2.
C.
Mattevi
,
H.
Kim
, and
M.
Chhowalla
,
J. Mater. Chem.
21
,
3324
(
2011
).
3.
X.
Li
,
W.
Cai
,
J.
An
,
S.
Kim
,
J.
Nah
 et al,
Science
324
,
1312
(
2009
).
4.
C. M.
Seah
,
S. P.
Chai
, and
A. R.
Mohamed
,
Carbon
70
,
1
(
2014
).
5.
S. J.
Blanksby
and
G. B.
Ellison
,
Acc. Chem. Res.
36
,
255
(
2003
).
6.
K.
Li
,
C.
He
,
M.
Jiao
,
Y.
Wang
, and
Z.
Wu
,
Carbon
74
,
255
(
2014
).
7.
S.
Yuan
,
L.
Meng
, and
J.
Wang
,
J. Phys. Chem. C
117
,
14796
(
2013
).
8.
W.
Zhang
,
P.
Wu
,
Z.
Li
, and
J.
Yang
,
J. Phys. Chem. C
115
,
17782
(
2011
).
9.
G.
Gajewski
and
C. W.
Pao
,
J. Chem. Phys.
135
,
064707
(
2011
).
10.
X.
Li
,
W.
Cai
,
L.
Colombo
, and
R. S.
Ruoff
,
Nano Lett.
9
,
4268
(
2009
).
11.
P. Y.
Teng
,
C. C.
Lu
,
K.
Akiyama-Hasegawa
,
Y. C.
Lin
,
C. H.
Yeh
 et al,
Nano Lett.
12
,
1379
(
2012
).
12.
H.
Kim
,
I.
Song
,
C.
Park
,
M.
Son
,
M.
Hong
 et al,
ACS Nano
7
,
6575
(
2013
).
13.
C.
Zhang
,
B. Y.
Man
,
S. Z.
Jiang
,
C.
Yang
,
M.
Liu
 et al,
Appl. Surf. Sci.
307
,
327
(
2014
).
14.
C.
Zhang
,
B. Y.
Man
,
C.
Yang
,
S. Z.
Jiang
,
M.
Liu
 et al,
Nanotechnology
24
,
395603
(
2013
).
15.
Y.
Song
,
J.
Liu
,
L.
Quan
,
N.
Pan
,
H.
Zhu
, and
X.
Wang
,
J. Phys. Chem. C
118
,
12526
(
2014
).
16.
H. Q.
Yang
,
Y. Q.
Chen
,
C. W.
Hu
,
M. C.
Gong
,
H. R.
Hu
 et al,
Chem. Phys. Lett.
355
,
233
(
2002
).
17.
Y.
Wang
,
Q.
Wang
,
Z.
Geng
,
L.
Lv
,
Y.
Si
 et al,
J. Phys. Chem. A
113
,
13808
(
2009
).
18.
D.
Troya
,
J. Phys. Chem. A
109
,
5814
(
2005
).
19.
J. D.
Beckerle
,
Q. Y.
Yang
,
A. D.
Johnson
, and
S. T.
Ceyer
,
J. Chem. Phys.
86
,
7236
(
1986
).
20.
J. D.
Beckerle
,
A. D.
Johnson
,
Q. Y.
Yang
, and
S. T.
Ceyer
,
J. Chem. Phys.
91
,
5756
(
1989
).
21.
C. T.
Rettner
,
H. E.
Pfn¨r
, and
D. J.
Auerbach
,
Phys. Rev. Lett.
54
,
2716
(
1985
).
22.
M. B.
Lee
,
Q. Y.
Yang
,
S. L.
Tang
, and
S. T.
Ceyer
,
J. Chem. Phys.
85
,
1693
(
1985
).
23.
M. B.
Lee
,
Q. Y.
Yang
, and
S. T.
Ceyer
,
J. Chem. Phys.
87
,
2724
(
1987
).
24.
H.
Ueta
,
M.
Saida
,
C.
Nakai
,
Y.
Yamada
,
M.
Sasaki
, and
S.
Yamamoto
,
Surf. Sci.
560
,
183
(
2004
).
25.
Z. J.
Zuo
,
L.
Wang
,
P. D.
Han
, and
W.
Huang
,
Comput. Theor. Chem.
1033
,
14
(
2014
).
26.
G. H.
Guvelioglu
,
P.
Ma
,
X.
He
,
R. C.
Forrey
, and
H.
Cheng
,
Phys. Rev. Lett.
94
,
026103
(
2005
).
27.
R. C.
Forrey
,
G. H.
Guvelioglu
,
P.
Ma
,
X.
He
, and
H.
Cheng
,
Phys. Rev. B
73
,
155436
(
2006
).
28.
X.
Yuan
,
L.
Liu
,
X.
Wang
,
M.
Yang
,
K. A.
Jackson
, and
J.
Jellinek
,
J. Phys. Chem. A
115
,
8705
(
2011
).
29.
L.
Padilla-Campos
,
J. Mol. Struct.: THEOCHEM
815
,
63
(
2007
).
30.
M.
Yang
,
K. A.
Jackson
,
C.
Koehler
,
T.
Frauenheim
, and
J.
Jellinek
,
J. Chem. Phys.
124
,
024308
(
2006
).
31.
V. A.
Ukraintsev
and
I.
Harrison
,
J. Chem. Phys.
101
,
1564
(
1994
).
32.
A.
Laio
and
M.
Parrinello
,
Proc. Natl. Acad. Sci. U. S. A.
99
,
12562
(
2002
).
33.
R.
Car
and
M.
Parrinello
,
Phys. Rev. Lett.
55
,
2471
(
1985
).
34.
CPMD V. 3.15.3, Copyright IBM Corp. 1990-2008, Copyright MPI für Festkörperforschung, Stuttgart, 1997-2001, http://cpmd.org/.
35.
V.
Van Speybroeck
and
R. J.
Meier
,
Chem. Soc. Rev.
32
,
151
(
2003
).
36.
A.
Laio
and
F. L.
Gervasio
,
Rep. Prog. Phys.
71
,
126601
(
2008
).
37.
S.
Zheng
and
J.
Pfaendtner
,
Mol. Simul.
41
,
55
(
2015
).
38.
X. J.
Kuang
,
X. Q.
Wang
, and
G. B.
Liu
,
J. Chem. Sci.
123
,
743
(
2011
).
39.
M.
Kabir
,
A.
Mookerjee
, and
A. K.
Bhattacharya
,
Eur. Phys. J. D
31
,
477
(
2004
).
40.
P. B.
Balbuena
,
P. A.
Derosa
, and
J. M.
Seminario
,
J. Phys. Chem. B
103
,
2830
(
1999
).
41.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
42.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
43.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
44.
D.
Vanderbilt
,
Phys. Rev. B
41
,
7892
(
1990
).
45.
S. G.
Louie
,
S.
Froyen
, and
M. L.
Cohen
,
Phys. Rev. B
26
,
1738
(
1982
).
46.
S.
Nosé
,
J. Chem. Phys.
81
,
511
(
1984
).
47.
W. G.
Hoover
,
Phys. Rev. A
31
,
1695
(
1985
).
48.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
,
J. Mol. Graphics
14
,
33
(
1996
).
49.
B.
Jiang
,
R.
Liu
,
J.
Li
,
D.
Xie
,
M.
Yang
, and
H.
Guo
,
Chem. Sci.
4
,
3249
(
2013
).
50.
B.
Jackson
,
F.
Nattino
, and
G. J.
Kroes
,
J. Chem. Phys.
141
,
054102
(
2014
).
51.
S.
Nave
,
A. K.
Tiwari
, and
B.
Jackson
,
J. Phys. Chem. A
118
,
9615
(
2014
).
52.
B.
Jiang
and
H.
Guo
,
J. Phys. Chem. C
117
,
16127
(
2013
).
53.
See supplementary material at http://dx.doi.org/10.1063/1.4919948 for further details regarding the computational methodology, additional supporting results, brief discussions, and video clips of the simulation trajectories corresponding to various reactions discussed in the manuscript.
54.
A. D.
Becke
and
K. E.
Edgecombe
,
J. Chem. Phys.
92
,
5397
(
1990
).
55.
N.
Troullier
and
J. L.
Martins
,
Phys. Rev. B
43
,
1993
(
1991
).
56.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
 et al, gaussian 09, Revision D.01, Gaussian, Inc., Wallingford, CT, 2009.
57.
P. J.
Hay
and
W. R.
Wadt
,
J. Chem. Phys.
82
,
270
(
1985
).
58.
R.
Dennington
,
T.
Keith
, and
J.
Millam
, GaussView 05, Semichem, Inc., Shawnee Mission, KS, 2009.
59.
E.
Dombrowski
,
E.
Peterson
,
D.
Del sesto
, and
A. L.
Utz
,
Catal. Today
244
,
10
(
2015
).
60.
I.
Alstrup
,
I.
Chorkendorff
, and
S.
Ullmann
,
Surf. Sci.
264
,
95
(
1992
).
61.
E. D.
German
and
M.
Sheintuch
,
J. Phys. Chem. C
117
,
22811
(
2013
).
62.
R.
Bisson
,
M.
Sacchi
, and
R. D.
Beck
,
Phys. Rev. B
82
,
121404
(
2010
).
63.
P. M.
Holmblad
,
J.
Wambach
, and
I.
Chorkendorff
,
J. Chem. Phys.
102
,
8255
(
1995
).
64.
M.
Sacchi
,
D. J.
Wales
, and
S. J.
Jenkins
,
J. Phys. Chem. C
115
,
21832
(
2011
).
65.
R. R.
Smith
,
D. R.
Killelea
,
D. F.
Delsesto
, and
A. L.
Utz
,
Science
304
,
992
(
2004
).
66.
L. B. F.
Juurlink
,
D. R.
Killelea
, and
A. L.
Utz
,
Prog. Surf. Sci.
84
,
69
(
2009
).
67.
L.
Halonen
,
S. L.
Bernasek
, and
D. J.
Nesbitt
,
J. Chem. Phys.
115
,
5611
(
2001
).
68.
B.
Jackson
and
S.
Nave
,
J. Chem. Phys.
138
,
174705
(
2013
).
69.
B.
Silvi
and
A.
Savin
,
Nature
371
,
683
(
1994
).
70.
P.
Fuentealba
,
E.
Chamorro
, and
J. C.
Santos
, in
Theoretical and Computational Chemistry–Theoretical Aspects of Chemical Reactivity
(
Elsevier
,
2007
), Vol.
19
, pp.
57
-
85
.
71.
A.
Savin
,
R.
Nesper
,
S.
Wengert
, and
T. F.
Fassler
,
Angew. Chem., Int. Ed. Engl.
36
,
1808
(
1997
).
72.
B.
Silvi
,
J. Mol. Struct.
614
,
3
(
2002
).
73.
R.
Rousseau
and
D.
Marx
,
Chem.-A Eur. J.
6
,
2982
(
2000
).
74.
B. L.
Yoder
,
R.
Bisson
, and
R. D.
Beck
,
Science
329
,
553
-
556
(
2010
).
75.
B. L.
Yoder
,
R.
Bisson
,
P. M.
Hundt
, and
R. D.
Beck
,
J. Chem. Phys.
135
,
224703
(
2011
).
76.
B.
Jiang
and
H.
Guo
,
J. Chem. Phys.
138
,
234104
(
2013
).
77.
X.
Zhang
,
L.
Wang
,
J.
Xin
,
B. I.
Yakobson
, and
F.
Ding
,
J. Am. Chem. Soc.
136
,
3040
(
2014
).
78.
Q.
Sun
,
Z.
Li
,
M.
Wang
,
A.
Du
, and
S. C.
Smith
,
Chem. Phys. Lett.
550
,
41
(
2012
).
79.
I.
Vlassiouk
,
M.
Regmi
,
P.
Fulvio
,
S.
Dai
,
P.
Datskos
,
G.
Eres
, and
S.
Smirnov
,
ACS Nano
5
,
6069
(
2011
).
80.
M.
Losurdo
,
M. M.
Giangregorio
,
P.
Capezzuto
, and
G.
Bruno
,
Phys. Chem. Chem. Phys.
13
,
20836
(
2011
).
81.
M.
Kalbac
,
O.
Frank
, and
L.
Kavan
,
Carbon
50
,
3682
(
2012
).
82.
Y.
Shibuta
,
R.
Arifin
,
K.
Shimamura
,
T.
Oguri
,
F.
Shimojo
, and
S.
Yamaguchi
,
Chem. Phys. Lett.
610-611
,
33
(
2014
).
83.
J.
Zhang
,
Z.
Wang
,
T.
Niu
,
S.
Wang
,
Z.
Li
, and
W.
Chen
,
Sci. Rep.
4
,
4431
(
2014
).
84.
K.
Li
,
C.
He
,
M.
Jiao
,
Y.
Wang
,
J.
Liu
, and
Z.
Wu
,
J. Phys. Chem. C
118
,
17662
(
2014
).
85.
M.
Sacchi
,
D. J.
Wales
, and
S. J.
Jenkins
,
Phys. Chem. Chem. Phys.
14
,
15879
(
2012
).
86.
F.
Nattino
,
H.
Ueta
,
H.
Chadwick
,
M. E.
van Reijzen
,
R. D.
Beck
 et al,
J. Phys. Chem. Lett.
5
,
1294
(
2014
).

Supplementary Material

You do not currently have access to this content.