We expand upon the recent semi-stochastic adaptation to full configuration interaction quantum Monte Carlo (FCIQMC). We present an alternate method for generating the deterministic space without a priori knowledge of the wave function and present stochastic efficiencies for a variety of both molecular and lattice systems. The algorithmic details of an efficient semi-stochastic implementation are presented, with particular consideration given to the effect that the adaptation has on parallel performance in FCIQMC. We further demonstrate the benefit for calculation of reduced density matrices in FCIQMC through replica sampling, where the semi-stochastic adaptation seems to have even larger efficiency gains. We then combine these ideas to produce explicitly correlated corrected FCIQMC energies for the beryllium dimer, for which stochastic errors on the order of wavenumber accuracy are achievable.

1.
W. M. C.
Foulkes
,
L.
Mitas
,
R. J.
Needs
, and
G.
Rajagopal
,
Rev. Mod. Phys.
73
,
33
(
2001
).
2.
3.
G. H.
Booth
,
A. J. W.
Thom
, and
A.
Alavi
,
J. Chem. Phys.
131
,
054106
(
2009
).
4.
J. S.
Spencer
,
N. S.
Blunt
, and
W. M. C.
Foulkes
,
J. Chem. Phys.
136
,
054110
(
2012
).
5.
G. H.
Booth
,
A.
Gruneis
,
G.
Kresse
, and
A.
Alavi
,
Nature
493
,
365
(
2012
).
6.
F. R.
Petruzielo
,
A. A.
Holmes
,
H. J.
Changlani
,
M. P.
Nightingale
, and
C. J.
Umrigar
,
Phys. Rev. Lett.
109
,
230201
(
2012
).
7.

If the deterministic space is the entire FCI space, then the algorithm reduces to the power method without explicit normalization; FCIQMC can be viewed as a stochastic version of this approach.

8.
D. M.
Cleland
,
G. H.
Booth
, and
A.
Alavi
,
J. Chem. Phys.
132
,
041103
(
2010
).
9.
D. M.
Cleland
,
G. H.
Booth
, and
A.
Alavi
,
J. Chem. Phys.
134
,
024112
(
2011
).
10.
See supplementary material at http://dx.doi.org/10.1063/1.4920975 for information and results for our adaptation to the initiator scheme.It also demonstrates the benefits of semi-stochastic for the homogeneous electron gas.
11.
C.
Overy
,
G. H.
Booth
,
N. S.
Blunt
,
J. J.
Shepherd
,
D.
Cleland
, and
A.
Alavi
,
J. Chem. Phys.
141
,
244117
(
2014
).
12.
J. J.
Shepherd
,
G. H.
Booth
, and
A.
Alavi
,
J. Chem. Phys.
136
,
244101
(
2012
).
13.
R. E.
Thomas
,
G. H.
Booth
, and
A.
Alavi
,
Phys. Rev. Lett.
114
,
033001
(
2015
).
14.
G. H.
Booth
,
S. D.
Smart
, and
A.
Alavi
,
Mol. Phys.
112
,
1855
(
2014
).
15.
J.
Olsen
,
B. O.
Roos
,
P.
Jørgensen
, and
H. J. A.
Jensen
,
J. Chem. Phys.
89
,
2185
(
1988
).
16.

We do not include the semi-stochastic initialization time because this would lead to the efficiency measure depending on the number of iterations performed, which is undesirable. We note, however, that this initialization time is usually negligible compared to the rest of the FCIQMC simulation, taking at most a few minutes for a deterministic space size of 105, in our implementation.

17.
H.
Flybjerg
and
H.
Petersen
,
J. Chem. Phys.
91
,
461
(
1989
).
18.
J. J.
Shepherd
,
G. H.
Booth
,
A.
Grüneis
, and
A.
Alavi
,
Phys. Rev. B
85
,
081103(R)
(
2012
).
19.
J. J.
Shepherd
,
A.
Grüneis
,
G. H.
Booth
,
G.
Kresse
, and
A.
Alavi
,
Phys. Rev. B
86
,
035111
(
2012
).
20.
S.
Zhang
and
M. H.
Kalos
,
J. Stat. Phys.
70
,
515
(
1993
).
21.
M. B.
Hastings
,
I.
González
,
A. B.
Kallin
, and
R. G.
Melko
,
Phys. Rev. Lett.
104
,
157201
(
2010
).
22.
N. S.
Blunt
,
T. W.
Rogers
,
J. S.
Spencer
, and
W. M. C.
Foulkes
,
Phys. Rev. B
89
,
245124
(
2014
).
23.

In practice, these amplitudes are actually averaged over multiple iterations before contributions are added in to Γpq,rs for efficiency reasons. Details of this procedure are not included here but were described in Ref. 11.

24.
This code can be obtained from https://github.com/ghb24/NECI_STABLE.git.
25.
W.
Kutzelnigg
,
Theor. Chim. Acta
68
,
445
(
1985
).
26.
W.
Klopper
and
W.
Kutzelnigg
,
Chem. Phys. Lett.
134
,
17
(
1987
).
27.
W.
Kutzelnigg
and
W.
Klopper
,
J. Chem. Phys.
94
,
1985
(
1991
).
28.
W.
Klopper
and
C. C. M.
Samson
,
J. Chem. Phys.
116
,
6397
(
2002
).
29.
30.
S.
Ten-no
,
J. Chem. Phys.
121
,
117
(
2004
).
31.
E. F.
Valeev
,
Chem. Phys. Lett.
395
,
190
(
2004
).
32.
L.
Kong
,
F. A.
Bischoff
, and
E. F.
Valeev
,
Chem. Rev.
112
,
75
(
2012
).
33.
C.
Hättig
,
W.
Klopper
,
A.
Köhn
, and
D. P.
Tew
,
Chem. Rev.
112
,
4
(
2012
).
34.
M.
Torheyden
and
E. F.
Valeev
,
J. Chem. Phys.
131
,
171103
(
2009
).
35.
L.
Kong
and
E. F.
Valeev
,
J. Chem. Phys.
135
,
214105
(
2011
).
36.
G. H.
Booth
,
D.
Cleland
,
A.
Alavi
, and
D. P.
Tew
,
J. Chem. Phys.
137
,
164112
(
2012
).
37.
T.
Yanai
and
T.
Shiozaki
,
J. Chem. Phys.
136
,
084107
(
2012
).
38.
S.
Sharma
,
T.
Yanai
,
G. H.
Booth
,
C. J.
Umrigar
, and
G. K.-L.
Chan
,
J. Chem. Phys.
140
,
104112
(
2014
).
39.
M.
Lesiuk
,
M.
Przybytek
,
M.
Musiał
,
B.
Jeziorski
, and
R.
Moszynskim
,
Phys. Rev. A
91
,
012510
(
2015
).
40.
J. M.
Merritt
,
V. E.
Bondybey
, and
M. C.
Heaven
,
Science
324
,
1548
(
2009
).
41.
K.
Patkowski
,
V.
Spirko
, and
K.
Szalewicz
,
Science
326
,
1382
(
2009
).
42.
J. A. W.
Harkless
and
K. K.
Irikura
,
Int. J. Quantum Chem.
106
,
2373
(
2006
).
43.
D. P.
Tew
and
W.
Klopper
,
J. Chem. Phys.
125
,
094302
(
2006
).
44.
I. C.
Gerber
and
J. G.
Ángyán
,
Chem. Phys. Lett.
416
,
370
(
2005
).
45.
L. B.
Roskop
,
L.
Kong
,
E. F.
Valeev
,
M. S.
Gordon
, and
T. L.
Windus
,
J. Chem. Theory Comput.
10
,
90
(
2013
).
46.
Y. G.
Smeyers
and
L.
Doreste-Suarez
,
Int. J. Quantum Chem.
7
,
687
(
1973
).
47.
G. H.
Booth
,
D.
Cleland
,
A. J. W.
Thom
, and
A.
Alavi
,
J. Chem. Phys.
135
,
084104
(
2011
).
48.
J.
Komasa
,
J.
Rychlewski
, and
K.
Jankowski
,
Phys. Rev. A
65
,
042507
(
2002
).

Supplementary Material

You do not currently have access to this content.