We use computer simulations to study the relaxation dynamics of a model for oil-in-water microemulsion droplets linked with telechelic polymers. This system exhibits both gel and glass phases and we show that the competition between these two arrest mechanisms can result in a complex, three-step decay of the time correlation functions, controlled by two different localization lengthscales. For certain combinations of the parameters, this competition gives rise to an anomalous logarithmic decay of the correlation functions and a subdiffusive particle motion, which can be understood as a simple crossover effect between the two relaxation processes. We establish a simple criterion for this logarithmic decay to be observed. We also find a further logarithmically slow relaxation related to the relaxation of floppy clusters of particles in a crowded environment, in agreement with recent findings in other models for dense chemical gels. Finally, we characterize how the competition of gel and glass arrest mechanisms affects the dynamical heterogeneities and show that for certain combination of parameters these heterogeneities can be unusually large. By measuring the four-point dynamical susceptibility, we probe the cooperativity of the motion and find that with increasing coupling this cooperativity shows a maximum before it decreases again, indicating the change in the nature of the relaxation dynamics. Our results suggest that compressing gels to large densities produces novel arrested phases that have a new and complex dynamics.

1.
K.
Binder
and
W.
Kob
,
Glassy Materials and Disordered Solids
(
World Scientific
,
Singapore
,
2005
).
2.
T. A.
Witten
,
Structured Fluids
(
Oxford University Press
,
Oxford
,
2004
).
3.
F.
Sciortino
and
P.
Tartaglia
,
Adv. Phys.
54
,
471
(
2005
).
4.
P.
Chaudhuri
,
L.
Berthier
, and
W.
Kob
,
Phys. Rev. Lett.
99
,
060604
(
2007
).
5.
V.
Lubchenko
and
P. G.
Wolynes
,
Annu. Rev. Phys. Chem.
58
,
235
(
2007
).
6.
R. G.
Larson
,
The Structure and Rheology of Complex Fluids
(
Oxford University Press
,
USA
,
1999
).
7.
E.
Zaccarelli
,
J. Phys.: Condens. Matter
19
,
323101
(
2007
).
8.
P. M.
Goldbart
,
H. E.
Castillo
, and
A.
Zippelius
,
Adv. Phys.
45
,
393
(
1996
).
9.
X.
Mao
,
P. M.
Goldbart
,
X.
Xing
, and
A.
Zippelius
,
Phys. Rev. E
80
,
031140
(
2009
).
10.
E.
Del Gado
,
A.
Fierro
,
L.
de Arcangelis
, and
A.
Coniglio
,
Phys. Rev. E
69
,
051103
(
2004
).
11.
P. J.
Lu
,
E.
Zaccarelli
,
F.
Ciulla
,
A. B.
Schofield
,
F.
Sciortino
, and
D. A.
Weitz
,
Nature
453
,
499
(
2008
).
12.
C. P.
Royall
,
S. R.
Williams
,
T.
Ohtsuka
, and
H.
Tanaka
,
Nat. Mater.
7
,
556
(
2008
).
13.
C. P.
Royall
and
A.
Malins
,
Faraday Discuss.
158
,
301
(
2012
).
14.
C. L.
Klix
,
C. P.
Royall
, and
H.
Tanaka
,
Phys. Rev. Lett.
104
,
165702
(
2010
).
15.
V.
Testard
,
L.
Berthier
, and
W.
Kob
,
Phys. Rev. Lett.
106
,
125702
(
2011
).
16.
M.
Suarez
,
N.
Kern
,
E.
Pitard
, and
W.
Kob
,
J. Chem. Phys.
130
,
194904
(
2009
).
17.
P. I.
Hurtado
,
L.
Berthier
, and
W.
Kob
,
Phys. Rev. Lett.
98
,
135503
(
2007
).
18.
E.
Michel
,
M.
Filali
,
R.
Aznar
,
G.
Porte
, and
J.
Appell
,
Langmuir
16
,
8702
(
2000
).
19.
P. I.
Hurtado
,
P.
Chaudhuri
,
L.
Berthier
, and
W.
Kob
,
AIP Conf. Proc.
1091
,
166
(
2009
).
20.
P.
Chaudhuri
,
L.
Berthier
,
P. I.
Hurtado
, and
W.
Kob
,
Phys. Rev. E
81
,
040502(R)
(
2010
).
21.
S.
Saw
,
N. L.
Ellegaard
,
W.
Kob
, and
S.
Sastry
,
Phys. Rev. Lett.
103
,
248305
(
2009
);
[PubMed]
S.
Saw
,
N. L.
Ellegaard
,
W.
Kob
, and
S.
Sastry
,
J. Chem. Phys.
134
,
164506
(
2011
).
[PubMed]
22.
E.
Del Gado
and
W.
Kob
,
Phys. Rev. Lett.
98
,
028303
(
2007
).
23.
A.
de Candia
,
E.
Del Gado
,
A.
Fierro
, and
A.
Coniglio
,
J. Stat. Mech.
2009
,
02052
.
24.
M.
Miller
,
R.
Blaak
,
C. N.
Lumb
, and
J. P.
Hansen
,
J. Chem. Phys.
130
,
114507
(
2009
).
25.
E.
Zaccarelli
,
S. V.
Buldyrev
,
E.
La Nave
,
A. J.
Moreno
,
I.
Saika-Voivod
,
F.
Sciortino
, and
P.
Tartaglia
,
Phys. Rev. Lett.
94
,
218301
(
2005
).
26.
F.
Sciortino
and
E.
Zaccarelli
,
Curr. Opin. Solid State Mater. Sci.
15
,
246
(
2011
).
27.
E.
Zaccarelli
,
I.
Saika-Voivod
,
S. V.
Buldyrev
,
A. J.
Moreno
,
P.
Tartaglia
, and
F.
Sciortino
,
J. Chem. Phys.
124
,
124908
(
2006
).
28.
E.
Zaccarelli
and
W. C. K.
Poon
,
Proc. Natl. Acad. Sci. U. S. A.
106
,
15203
(
2009
).
29.
A. M.
Puertas
,
M.
Fuchs
, and
M. E.
Cates
,
Phys. Rev. Lett.
88
,
098301
(
2002
).
30.
M.
Lagi
,
P.
Baglioni
, and
S.-H.
Chen
,
Phys. Rev. Lett.
103
,
108102
(
2009
).
31.
A.
Duri
and
L.
Cipelletti
,
EPL
76
,
972
(
2006
).
32.
J.
Bergenholtz
and
M.
Fuchs
,
Phys. Rev. E
59
,
5706
(
1999
).
33.
K.
Dawson
,
G.
Foffi
,
M.
Fuchs
,
W.
Götze
,
F.
Sciortino
,
M.
Sperl
,
P.
Tartaglia
,
T.
Voigtmann
, and
E.
Zaccarelli
,
Phys. Rev. E
63
,
011401
(
2000
).
34.
K.
Kroy
,
M. E.
Cates
, and
W. C. K.
Poon
,
Phys. Rev. Lett.
92
,
148302
(
2004
).
35.
C.
Zhao
,
G.
Yuan
, and
C. C.
Han
,
Soft Matter
10
,
8905
(
2014
).
36.
I.
Hoffmann
,
P. M.
de Molina
,
B.
Farago
,
P.
Falus
,
C.
Herfurth
,
A.
Laschewsky
, and
M.
Gradzielski
,
J. Chem. Phys.
140
,
034902
(
2014
).
37.
C. P.
Royall
,
S. R.
Williams
, and
H.
Tanaka
, “
The nature of the glass and gel transitions in sticky spheres
,” e-print arXiv:1409.5469.
38.
A. J.
Moreno
and
J.
Colmenero
,
Phys. Rev. E
74
,
021409
(
2006
).
39.
M.
Sperl
,
E.
Zaccarelli
,
F.
Sciortino
,
P.
Kumar
, and
H. E.
Stanley
,
Phys. Rev. Lett.
104
,
145701
(
2010
).
40.
A. M.
Puertas
and
M.
Fuchs
, in
Structure and Functional Properties of Colloidal Systems
, edited by
R.
Hidalgo-Alvarez
(
Taylor and Francis
,
London
,
2009
).
41.
M.
Bernabei
,
A. J.
Moreno
, and
J.
Colmenero
,
Phys. Rev. Lett.
101
,
255701
(
2008
).
42.
N.
Khalil
,
A.
de Candia
,
A.
Fierro
,
M. P.
Ciamarra
, and
A.
Coniglio
,
Soft Matter
10
,
4800
(
2014
).
44.

Note that the full inter-particle potential, with our choice of ϵ2 = 50, see Eq. (1), has a minimum at around 1σ, see Fig. 1 in Ref. 19, which therefore determines the characteristic localization length due to the bonds, see dashed line in Fig. 3(b).

45.
W.
Kob
and
H. C.
Andersen
,
Phys. Rev. E
51
,
4626
(
1995
).
46.
M.
Nauroth
and
W.
Kob
,
Phys. Rev. E
55
,
657
(
1997
).
47.
A. M.
Puertas
,
M.
Fuchs
, and
M. E.
Cates
,
Phys. Rev. E
67
,
031406
(
2003
).
48.
K.
Kim
,
K.
Miyazaki
, and
S.
Saito
,
EPL
88
,
36002
(
2009
).
49.
J.
Kurzidim
,
D.
Coslovich
, and
G.
Kahl
,
Phys. Rev. Lett.
103
,
138303
(
2009
).
50.
W.
Kob
,
C.
Donati
,
S. J.
Plimpton
,
P. H.
Poole
, and
S. C.
Glotzer
,
Phys. Rev. Lett.
79
,
2827
(
1997
).
51.
N.
Lacevic
,
F. W.
Starr
,
T. B.
Schroder
, and
S. C.
Glotzer
,
J. Chem. Phys.
119
,
7372
(
2003
).
52.
I.
Saika-Voivod
,
H. M.
King
,
P.
Tartaglia
,
F.
Sciortino
, and
E.
Zaccarelli
,
J. Phys.: Condens. Matter
23
,
285101
(
2011
).
53.
C.
De Michele
,
S.
Gabrielli
,
P.
Tartaglia
, and
F.
Sciortino
,
J. Phys. Chem. B
110
,
8064
(
2006
).
54.
C.
Toninelli
,
M.
Wyart
,
L.
Berthier
,
G.
Biroli
, and
J.-P.
Bouchaud
,
Phys. Rev. E
71
,
041505
(
2005
).
55.
T.
Abete
,
A.
de Candia
,
E.
Del Gado
,
A.
Fierro
, and
A.
Coniglio
,
Phys. Rev. E
78
,
041404
(
2008
).
56.
J.
Colombo
and
E.
Del Gado
,
Soft Matter
10
,
4003
(
2014
).
57.
F. W.
Starr
,
J. F.
Douglas
, and
S.
Sastry
,
J. Chem. Phys.
138
,
12A541
(
2013
).
58.
A. J.
Dunleavy
,
K.
Wiesner
,
R.
Yamamoto
, and
C. P.
Royall
,
Nat. Commun.
6
,
6089
(
2015
).
59.
P.
Malo de Molina
,
C.
Herfurth
,
A.
Laschewsky
, and
M.
Gradzielski
,
Langmuir
28
,
15994
(
2012
).
60.
H.
Tabuteau
,
S.
Mora
,
G.
Porte
,
M.
Abkarian
, and
C.
Ligoure
,
Phys. Rev. Lett.
102
,
155501
(
2009
).
61.
C.
Ligoure
and
S.
Mora
,
Rheol. Acta
52
,
91
(
2013
).
You do not currently have access to this content.