We investigate microscopic structure and thermodynamic properties of a mixture that contains amphiphilic molecules and charged hard spheres confined in slit-like pores with uncharged hard walls. The model and the density functional approach are the same as described in details in our previous work [Pizio et al., J. Chem. Phys. 140, 174706 (2014)]. Our principal focus is in exploring the effects brought by the presence of ions on the structure of confined amphiphilic particles. We have found that for some cases of anisotropic interactions, the change of the structure of confined fluids occurs via the first-order transitions. Moreover, if anions and cations are attracted by different hemispheres of amphiphiles, a charge at the walls appears at the zero value of the wall electrostatic potential. For a given thermodynamic state, this charge is an oscillating function of the pore width.

You do not currently have access to this content.