We investigate microscopic structure and thermodynamic properties of a mixture that contains amphiphilic molecules and charged hard spheres confined in slit-like pores with uncharged hard walls. The model and the density functional approach are the same as described in details in our previous work [Pizio et al., J. Chem. Phys. 140, 174706 (2014)]. Our principal focus is in exploring the effects brought by the presence of ions on the structure of confined amphiphilic particles. We have found that for some cases of anisotropic interactions, the change of the structure of confined fluids occurs via the first-order transitions. Moreover, if anions and cations are attracted by different hemispheres of amphiphiles, a charge at the walls appears at the zero value of the wall electrostatic potential. For a given thermodynamic state, this charge is an oscillating function of the pore width.

1.
X.
Zhao
,
F.
Pan
,
H.
Xu
,
M.
Yaseen
,
H.
Shan
,
C. A. E.
Hauser
,
S.
Zhang
, and
J. R.
Lu
,
Chem. Soc. Rev.
39
,
3499
(
2010
).
2.
Y.
Yang
,
U.
Khoe
,
X.
Wang
,
H.
Akihiro
,
H.
Yokoi
, and
S.
Zhang
,
Nano Today
4
,
193
(
2009
).
3.
M.
Ramanathan
,
L. K.
Shrestha
,
T.
Mori
,
Q.
Ji
,
J. P.
Hill
, and
K.
Ariga
,
Phys. Chem. Chem. Phys.
15
,
10580
(
2013
).
4.
K.
Ariga
,
Q.
Ji
,
T.
Mori
,
M.
Naito
,
Y.
Yamauchi
,
H.
Abe
, and
J. P.
Hill
,
Chem. Soc. Rev.
42
,
6322
(
2013
).
5.
V. S.
Balachandran
,
S. R.
Jadhav
,
P. K.
Vemula
, and
G.
John
,
Chem. Soc. Rev.
42
,
427
(
2013
).
6.
D. J.
McClements
,
E. A.
Decker
,
Y.
Park
, and
J.
Weiss
,
Crit. Rev. Food Sci. Nutr.
49
,
577
(
2009
).
7.
B.
Lukanov
and
A.
Firoozabadi
,
Langmuir
30
,
6373
(
2014
).
8.
H. J.
Jiang
,
P. A.
Fitzgerald
,
A.
Dolan
,
R.
Atkin
, and
G. G.
Warr
,
J. Phys. Chem. B
118
,
9983
(
2014
).
9.
T. S.
Kang
,
K.
Ishiba
,
M.
Morikawa
, and
N.
Kimizuka
,
Langmuir
30
,
2376
(
2014
).
10.
Y.
Cote
,
I. W.
Fu
,
E. T.
Dobson
,
J. E.
Goldberger
,
H. D.
Nguyen
, and
J. K.
Shen
,
J. Phys. Chem. C
118
,
16272
(
2014
).
11.
G.
Pinedo-Martín
,
M.
Santos
,
A. M.
Testera
,
M.
Alonso
, and
J. C.
Rodríguez-Cabello
,
Polymer
55
,
5314
(
2014
).
12.
F.
Schmid
and
M.
Schick
,
Phys. Rev. E
49
,
494
(
1994
).
13.
R.
Goetz
and
R.
Lipowsky
,
J. Chem. Phys.
108
,
7397
(
1998
).
14.
H.
Shinto
,
M.
Miyahara
, and
K.
Higashitani
,
Langmuir
16
,
3361
(
2000
).
15.
B.
Smit
,
A. G.
Schlijper
,
L. A. M.
Rupert
, and
N. M.
van Os
,
J. Phys. Chem.
94
,
6933
(
1990
).
16.
G.
Rosenthal
,
K. E.
Gubbins
, and
S. H. L.
Klapp
,
J. Chem. Phys.
136
,
174901
(
2012
).
17.
G.
Rosenthal
and
S. H. L.
Klapp
,
Int. J. Mol. Sci.
13
,
9431
(
2012
).
18.
A. P.
Hynninen
and
M.
Dijkstra
,
Phys. Rev. Lett.
94
,
138303
(
2005
).
19.
F.
Sciortino
,
A.
Giacometti
, and
G.
Pastore
,
Phys. Rev. Lett.
103
,
237801
(
2009
).
20.
W. L.
Miller
and
A.
Cacciuto
,
Phys. Rev. E
80
,
021404
(
2009
).
21.
Y.
Wang
,
B.
Li
,
Y.
Zhou
,
Z.
Lu
, and
D.
Yan
,
Soft Matter
9
,
3293
(
2013
).
22.
W.
Shinoda
,
R.
DeVane
, and
M. L
Klein
,
Curr. Opin. Struct. Biol.
22
,
175
(
2012
).
23.
R.
Mahfud
,
D.
Lacks
,
H.
Ishida
, and
S.
Qutubuddin
,
Langmuir
30
(
40
),
11858
(
2014
).
24.
X.
Li
,
Y.-H.
Tang
,
H.
Liang
, and
G. E.
Karniadakis
,
Chem. Commun.
50
,
8306
(
2014
).
25.
G.
Jiménez-Serratos
,
A.
Gil-Villegas
,
C.
Vega
, and
F. J.
Blas
,
J. Chem. Phys.
139
,
114901
(
2013
).
26.
M. M.
Moghani
and
B.
Khomami
,
Soft Matter
9
,
4815
(
2013
).
27.
P.-G.
de Gennes
,
Angew. Chem., Int. Ed.
31
,
842
(
1992
).
28.
A.
Perro
,
S.
Reculusa
,
S.
Ravaine
,
E.
Bourgeat-Lami
, and
E.
Duguet
,
J. Mater. Chem.
15
,
3745
(
2005
).
29.
V. V.
Vasilevskaya
and
V. A.
Ermilov
,
Polym. Sci., Ser. A
53
,
846
(
2011
).
30.
J. C.
Shelley
and
M. Y.
Shelley
,
Curr. Opin. Colloid Interface Sci.
5
,
101
(
2000
).
31.
H.
Bock
and
K. E.
Gubbins
,
Phys. Rev. Lett.
92
,
135701
(
2004
).
32.
G.
Rosenthal
, “
Theory and computer simulations of amphiphilic Janus particles
,” Ph.D. thesis (
TU Berlin
,
2012
), http://opus.kobv.de/tuberlin/volltexte/2012/3587/.
33.
G.
Rosenthal
and
S. H. L.
Klapp
,
J. Chem. Phys.
134
,
154707
(
2011
).
34.
M.
Borówko
,
T.
Pöschel
,
S.
Sokołowski
, and
T.
Staszewski
,
J. Phys. Chem. B
117
,
1166
(
2013
).
35.
A.
Patrykiejew
,
S.
Sokołowski
,
Z.
Sokołowska
, and
Ja.
Ilnytskyi
,
J. Chem. Phys.
139
,
224711
(
2013
).
36.
C. S.
Dias
,
N. A. M.
Araujo
, and
M. M.
Telo da Gama
,
J. Chem. Phys.
139
,
154903
(
2013
).
37.
L.
Rovigatti
,
D.
de las Heras
,
J. M.
Tavares
,
M. M.
Telo da Gama
, and
F.
Sciortino
,
J. Chem. Phys.
138
,
164904
(
2013
).
38.
Y.
Mai
and
A.
Eisenberg
,
Chem. Soc. Rev.
41
,
5969
(
2012
).
39.
E. B.
Zhulina
and
O. V.
Borisov
,
Macromolecules
45
,
4429
(
2012
).
40.
Y.
Nakatani
,
N.
Ribeiro
,
S.
Streiff
,
M.
Gotoh
,
G.
Pozzi
,
L.
Désaubry
, and
A.
Milon
,
Origins Life Evol. Biospheres
44
,
197
(
2014
).
41.
O.
Pizio
,
S.
Sokołowski
, and
Z.
Sokołowska
,
J. Chem. Phys
140
,
174706
(
2014
).
42.
Y.-X.
Yu
and
J.-Z.
Wu
,
J. Chem. Phys.
117
,
2368
(
2002
);
Y.-X.
Yu
and
J.-Z.
Wu
,
J. Chem. Phys.
117
,
10156
(
2002
);
Y.-X.
Yu
and
J.-Z.
Wu
,
J. Chem. Phys.
118
,
3835
(
2003
).
43.
Z.
Wang
,
L.
Liu
, and
I.
Neretnieks
,
J. Phys.: Condens. Matter
23
,
175002
(
2011
).
44.
Z.
Wang
,
L.
Liu
, and
I.
Neretnieks
,
J. Chem. Phys.
135
,
244107
(
2011
).
45.
A. M.
Somoza
,
E.
Chacón
,
L.
Mederos
, and
P.
Tarazona
,
J. Phys.: Condens. Matter
7
,
5753
(
1995
).
46.
S. G.
Johnson
and
M.
Frigo
, “
Implementing FFTs in practice
,” in
Fast Fourier Transforms, Connexions
, edited by
C. S.
Burrus
(
Houston
,
2008
), Chap. 11.
47.
A. A.
Aerov
,
A. R.
Khokholov
, and
I. I.
Potemkin
,
J. Phys. Chem. B
114
,
15066
(
2010
).
48.
A.
Walther
and
A. H. E.
Müller
,
Chem. Rev.
113
,
5194
(
2013
).
49.
J.
Jiang
,
D.
Cao
,
D.
Henderson
, and
J.
Wu
,
J. Chem. Phys.
140
,
044714
(
2014
).
50.
D.
Henderson
and
L.
Blum
,
J. Chem. Phys.
69
,
5441
(
1978
);
L. B.
Bhuiyan
,
D.
Henderson
, and
S.
Sokołowski
,
Condens. Matter Phys.
15
,
23801
(
2012
).
You do not currently have access to this content.