In this study, we develop three intermolecular potentials for methane (CH4), tetrafluoromethane (CF4), and CH4/CF4 dimers using a novel ab initio method. The ultimate goal is to understand microscopically the phase-separation in CH4/CF4 systems, which takes place in the liquid states near their freezing points. Monte-Carlo (MC) simulations of the pure CH4 system are performed using the ab initio energies to verify the potential. The simulations reproduce quite well the experimentally known liquid densities, the internal energies, the second virial coefficients, and the radial distribution function. The essentially six-dimensional (6D) ab initio potential is then reduced to a one-dimensional (1D) effective potential using the inverse Monte-Carlo technique. This potential, too, successfully reproduces the experimental results. Interestingly, the MC study cannot be extended to the pure CF4 system and the CH4/CF4 mixed system because the two respective ab initio potentials present very rough potential landscapes. This renders the interpolation of energies for the MC simulations and thus the multi-scale approach unreliable. It suggests, however, a possible driving force for the experimentally observed phase separation of the CH4/CF4 system at low temperatures. Furthermore, we carefully study the determination of 1D effective potentials via inverse MC techniques. We argue that to a good approximation the temperature dependence of the 1D potentials can be estimated via reweighting techniques for a fixed temperature.

1.
I. T.
Horváth
,
Acc. Chem. Res.
31
,
641
650
(
1998
).
2.
A. P.
Dobbs
and
M. R.
Kimberley
,
J. Fluorine Chem.
118
,
3
17
(
2002
).
3.
S.
Purser
,
P. R.
Moore
,
S.
Swallow
, and
V.
Gouverneur
,
Chem. Soc. Rev.
37
,
320
330
(
2008
).
4.
G.
Pitarresi
,
A. P.
Piccionello
,
R.
Calabrese
,
A.
Pace
,
S.
Buscemi
, and
G.
Giammona
,
J. Fluorine Chem.
129
,
1096
1103
(
2008
).
5.
R. L.
Stavis
,
M. R.
Wolfson
,
C.
Cox
,
N.
Kechner
, and
T. H.
Shaffer
,
Pediatr. Res.
43
,
132
138
(
1998
).
6.
H.
Weber
,
O.
Hollóczki
,
A. S.
Pensado
, and
B.
Kirchner
,
J. Chem. Phys.
139
,
084502
(
2013
).
7.
J. G.
Riess
,
Tetrahedron
58
,
4113
4131
(
2002
).
8.
N.
Thorp
and
R. L.
Scott
,
J. Phys. Chem.
60
,
670
673
(
1956
).
9.
I. M.
Croll
and
R. L.
Scott
,
J. Phys. Chem.
62
,
954
957
(
1958
).
10.
R.
Paas
and
G. M.
Schneider
,
J. Chem. Thermodyn.
11
,
267
276
(
1979
).
11.
K. E.
Riley
and
P.
Hobza
,
Phys. Chem. Chem. Phys.
15
,
17742
17751
(
2013
).
12.
S.
Kozuch
and
J. M. L.
Martin
,
J. Chem. Theory Comput.
9
,
1918
1931
(
2013
).
13.
P.
Politzer
and
J. S.
Murray
,
ChemPhysChem
14
,
278
294
(
2013
).
14.
S. A. C.
McDowell
and
J. A.
Joseph
,
Chem. Phys. Lett.
603
,
37
40
(
2014
).
15.
P.
Politzer
,
J. S.
Murray
, and
T.
Clark
,
Phys. Chem. Chem. Phys.
15
,
11178
11189
(
2013
).
16.
S.
Ehrlich
,
J.
Moellmann
, and
S.
Grimme
,
Acc. Chem. Res.
46
,
916
926
(
2013
).
17.
M.
Schoen
,
C.
Hoheisel
, and
O.
Beyer
,
Mol. Phys.
58
(
4
),
699
709
(
1986
).
18.
S.
Brode
and
I. R.
McDonald
,
Mol. Phys.
65
,
1007
1012
(
1988
).
19.
H. M.
Schaink
and
C.
Hoheisel
,
Physica A
184
,
451
457
(
1992
).
20.
W.
Song
,
P. J.
Rossky
, and
M.
Maroncelli
,
J. Chem. Phys.
119
,
9145
9162
(
2003
).
21.
L.
Zhang
and
J. I.
Siepmann
,
J. Phys. Chem. B
109
,
2911
2919
(
2005
).
22.
A. K.
Soper
,
Chem. Phys.
202
,
295
306
(
1996
).
23.
D.
Reith
,
M.
Pütz
, and
F.
Müller-Plathe
,
J. Comput. Chem.
24
,
1624
1636
(
2003
).
24.
A. P.
Lyubartsev
and
A.
Laaksonen
,
Phys. Rev. E
52
,
3730
3737
(
1995
).
25.
N. G.
Almarza
and
E.
Lomba
,
Phys. Rev. E
68
,
011202
(
2003
).
26.
A. M.
Ferrenberg
and
R. H.
Swendsen
,
Phys. Rev. Lett.
61
,
2635
2638
(
1988
).
27.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
28.
L.
Šimová
,
J.
Řezáč
, and
P.
Hobza
,
J. Chem. Theory Comput.
9
,
3420
3428
(
2013
).
29.
L.
Goerigk
and
S.
Grimme
,
J. Chem. Theory Comput.
7
,
291
309
(
2011
).
30.
Y.
Zhao
and
D. G.
Truhlar
,
Acc. Chem. Res.
41
,
157
167
(
2008
).
31.
L. A.
Burns
,
Á.
Vázquez-Mayagoitia
,
B. G.
Sumpter
, and
C. D.
Sherrill
,
J. Chem. Phys.
134
,
084107
(
2011
).
32.
J.
Řezáč
,
K. E.
Riley
, and
P.
Hobza
,
J. Chem. Theory Comput.
8
,
4285
4292
(
2012
).
33.
J.
Řezáč
,
K. E.
Riley
, and
P.
Hobza
,
J. Chem. Theory Comput.
7
,
2427
2438
(
2011
).
34.
L.
Gráfova
,
M.
Pitoňák
,
J.
Řezáč
, and
P.
Hobza
,
J. Chem. Theory Comput.
6
,
2365
2376
(
2010
).
35.
T.
Risthaus
and
S.
Grimme
,
J. Chem. Theory Comput.
9
,
1580
1591
(
2013
).
36.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
,
J. Chem. Phys.
132
,
154104
(
2010
).
37.
A.
Halkier
,
T.
Helgaker
,
P.
Jørgensen
,
W.
Klopper
, and
J.
Olsen
,
Chem. Phys. Lett.
302
(
5-6
),
437
446
(
1999
).
38.
A.
Halkier
,
T.
Helgaker
,
P.
Jørgensen
,
W.
Klopper
,
H.
Koch
,
J.
Olsen
, and
A. K.
Wilson
,
Chem. Phys. Lett.
286
,
243
252
(
1998
).
39.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
1023
(
1989
).
40.
R. A.
Kendall
,
T. H.
Dunning
, Jr.
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
6806
(
1992
).
41.
J.
Řezáč
and
P.
Hobza
,
J. Chem. Theory Comput.
9
,
2151
2155
(
2013
).
42.
M. S.
Marshall
,
L. A.
Burns
, and
C. D.
Sherrill
,
J. Chem. Phys.
135
,
194102
(
2011
).
43.
L. A.
Burns
,
M. S.
Marshall
, and
C. D.
Sherrill
,
J. Chem. Theory Comput.
10
,
49
57
(
2014
).
44.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
5652
(
1993
).
45.
A.
Schäfer
,
C.
Huber
, and
R.
Ahlrichs
,
J. Chem. Phys.
100
,
5829
5835
(
1994
).
46.
S.
Tsuzuki
,
T.
Uchimaru
,
M.
Mikami
, and
S.
Urata
,
J. Chem. Phys.
116
,
3309
3315
(
2002
).
47.
R.
Mahlanen
,
J.-P.
Jalkanen
, and
T. A.
Pakkanen
,
Chem. Phys.
313
,
271
277
(
2005
).
48.
M. J.
Biller
and
S.
Mecozzi
,
Mol. Phys.
110
,
377
387
(
2012
).
49.
F.
Weigend
,
F.
Furche
, and
R.
Ahlrichs
,
J. Chem. Phys.
119
,
12753
12762
(
2003
).
50.
See supplementary material at http://dx.doi.org/10.1063/1.4919079 for the coordinates in Cartesian and Z-matrix format of several conformers referenced in the text and plots of reference curves. The threeab initiopotentials can be accessed from the following URL: http://www.thch.uni-bonn.de/tc/ch4cf4.
51.
W.
Klyne
and
V.
Prelog
,
Experentia
16
,
521
523
(
1960
), note that this system is implemented in the MOPAC program.
52.
D.
Anderson
, Berkeley Open Infrastructure for Network Computing, http://boinc.berkeley.edu.
53.
M.
Korth
and
S.
Grimme
, Quantum Monte Carlo @ Home, http://qmcathome.org.
54.
F.
Neese
, “
The ORCA program system
,”
WIREs: Comput. Mol. Sci.
2
,
73
78
(
2012
).
55.
DFT-D3 V3.1, developed by the Grimme Group, http://www.thch.uni-bonn.de/tc/dftd3.
56.
A. J.
Stone
,
The Theory of Intermolecular Forces
(
Oxford University Press
,
Oxford
,
1997
).
57.
R. S.
Mulliken
,
J. Chem. Phys.
23
,
1833
1840
(
1955
).
58.
A.
Szabo
and
N. S.
Ostlund
,
Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory
(
McGraw-Hill
,
New York
,
1989
).
59.
J. W.
Ponder
and
D. A.
Case
,
Protein Simulations
,
Advances in Protein Chemistry
Vol.
66
, edited by
V.
Daggett
(
Academic Press
,
2003
), pp.
27
85
.
60.
J.
Yang
,
W.
Hu
,
D.
Usvyat
,
D.
Matthews
,
M.
Schütz
, and
G. K.-L.
Chan
,
Science
345
(
6197
),
640
643
(
2014
).
61.
H. S.
Frank
and
W.-Y.
Wen
,
Discuss. Faraday Soc.
24
,
133
140
(
1957
).
62.
J.
Yang
and
M. P.
Waller
,
J. Phys. Chem. A
117
,
174
182
(
2013
).
63.
A.
Habenschuss
,
E.
Johnson
, and
A. H.
Narten
,
J. Chem. Phys.
74
(
9
),
5234
5241
(
1981
).
64.
U.
Setzmann
and
W.
Wagner
,
J. Phys. Chem. Ref. Data
20
(
6
),
1061
1155
(
1991
).
65.
D. R.
Douslin
,
R. H.
Harrison
,
R. T.
Moore
, and
J. P.
McCullough
,
J. Chem. Eng. Data
9
(
3
),
358
363
(
1964
).
66.
P.
Hestermans
and
D.
White
,
J. Phys. Chem.
65
,
362
365
(
1961
).
67.
M. A.
Byrne
,
M. R.
Jones
, and
L. A. K.
Staveley
,
Trans. Faraday Soc.
64
,
1747
1756
(
1968
).

Supplementary Material

You do not currently have access to this content.