We analyze the methodology and the performance of subsystem density functional theory (DFT) with meta-generalized gradient approximation (meta-GGA) exchange-correlation functionals for non-bonded molecular systems. Meta-GGA functionals depend on the Kohn-Sham kinetic energy density (KED), which is not known as an explicit functional of the density. Therefore, they cannot be directly applied in subsystem DFT calculations. We propose a Laplacian-level approximation to the KED which overcomes this limitation and provides a simple and accurate way to apply meta-GGA exchange-correlation functionals in subsystem DFT calculations. The so obtained density and energy errors, with respect to the corresponding supermolecular calculations, are comparable with conventional approaches, depending almost exclusively on the approximations in the non-additive kinetic embedding term. An embedding energy error decomposition explains the accuracy of our method.

1.
2.
T. A.
Wesolowski
and
J.
Weber
,
Chem. Phys. Lett.
248
,
71
(
1996
).
3.
T. A.
Wesolowski
, in
Chemistry: Reviews of Current Trends
, edited by
J.
Leszczynski
(
World Scientific
,
Singapore
,
2006
), Vol.
10
, pp.
1
82
.
5.
C. R.
Jacob
and
J.
Neugebauer
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
,
325
(
2014
).
6.
A.
Krishtal
,
D.
Sinha
,
A.
Genova
, and
M.
Pavanello
, “
Subsystem density-functional theory as an effective tool for modeling ground and excited states, their dynamics, and many-body interactions
,”
J. Phys.: Condens. Matter
(in press).
7.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
8.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
9.
T. A.
Wesolowski
,
H.
Chermette
, and
J.
Weber
,
J. Chem. Phys.
105
,
9182
(
1996
).
10.
T. A.
Wesolowski
,
J. Chem. Phys.
106
,
8516
(
1997
).
11.
T. A.
Wesolowski
,
Y.
Ellinger
, and
J.
Weber
,
J. Chem. Phys.
108
,
6078
(
1998
).
12.
T. A.
Wesolowski
and
F.
Tran
,
J. Chem. Phys.
118
,
2072
(
2003
).
13.
R.
Kevorkyants
,
M.
Dulak
, and
T. A.
Wesolowski
,
J. Chem. Phys.
124
,
024104
(
2006
).
14.
M.
Dulak
and
T. A.
Wesolowski
,
J. Mol. Model.
13
,
631
(
2007
).
15.
M.
Duak
,
J. W.
Kamiski
, and
T. A.
Wesolowski
,
J. Chem. Theory Comput.
3
,
735
(
2007
).
16.
J. M.
Garcia Lastra
,
J. W.
Kaminski
, and
T. A.
Wesolowski
,
J. Chem. Phys.
129
,
074107
(
2008
).
17.
A. W.
Götz
,
S. M.
Beyhan
, and
L.
Visscher
,
J. Chem. Theory Comput.
5
,
3161
(
2009
).
18.
G.
Fradelos
and
T. A.
Wesolowski
,
J. Chem. Theory Comput.
7
,
213
(
2011
).
19.
L. A.
Constantin
,
E.
Fabiano
,
S.
Laricchia
, and
F.
Della Sala
,
Phys. Rev. Lett.
106
,
186406
(
2011
).
20.
S.
Laricchia
,
E.
Fabiano
,
L. A.
Constantin
, and
F.
Della Sala
,
J. Chem. Theory Comput.
7
,
2439
(
2011
).
21.
S.
Laricchia
,
E.
Fabiano
, and
F.
Della Sala
,
Chem. Phys. Lett.
518
,
114
(
2011
).
22.
S.
Laricchia
,
E.
Fabiano
, and
F.
Della Sala
,
J. Chem. Phys.
137
,
014102
(
2012
).
23.
E.
Fabiano
,
S.
Laricchia
, and
F.
Della Sala
,
J. Chem. Phys.
140
,
114101
(
2014
).
24.
S.
Laricchia
,
E.
Fabiano
, and
F.
Della Sala
,
J. Chem. Phys.
138
,
124112
(
2013
).
25.
S.
Laricchia
,
L. A.
Constantin
,
E.
Fabiano
, and
F.
Della Sala
,
J. Chem. Theory Comput.
10
,
164
(
2014
).
26.
D.
Schluns
,
K.
Klahr
,
C.
Muck-Lichtenfeld
,
L.
Visscher
, and
J.
Neugebauer
, “
Subsystem-DFT potential-energy curves for weakly interacting systems
,”
Phys. Chem. Chem. Phys.
(in press).
27.
R.
Kevorkyants
,
H.
Eshuis
, and
M.
Pavanello
,
J. Chem. Phys.
141
,
044127
(
2014
).
28.
C. R.
Jacob
and
L.
Visscher
,
J. Chem. Phys.
128
,
155102
(
2008
).
29.
S.
Fux
,
K.
Kiewisch
,
C. R.
Jacob
,
J.
Neugebauer
, and
M.
Reiher
,
Chem. Phys. Lett.
461
,
353
(
2008
).
30.
S. M.
Beyhan
,
A. W.
Götz
,
C. R.
Jacob
, and
L.
Visscher
,
J. Chem. Phys.
132
,
044114
(
2010
).
31.
S.
Fux
,
C. R.
Jacob
,
J.
Neugebauer
,
L.
Visscher
, and
M.
Reiher
,
J. Chem. Phys.
132
,
164101
(
2010
).
32.
T. A.
Wesolowski
and
A.
Warshel
,
J. Phys. Chem.
97
,
8050
(
1993
).
33.
M.
Hodak
,
W.
Lu
, and
J.
Bernholc
,
J. Chem. Phys.
128
,
014101
(
2008
).
34.
J.
Neugebauer
,
M. J.
Louwerse
,
E. J.
Baerends
, and
T. A.
Wesolowski
,
J. Chem. Phys.
122
,
094115
(
2005
).
35.
C. R.
Jacob
,
J.
Neugebauer
,
L.
Jensen
, and
L.
Visscher
,
Phys. Chem. Chem. Phys.
8
,
2349
(
2006
).
36.
J.
Neugebauer
,
M. J.
Louwerse
,
P.
Belanzoni
,
T. A.
Wesolowski
, and
E. J.
Baerends
,
J. Chem. Phys.
123
,
114101
(
2005
).
37.
J. W.
Kaminski
,
S.
Gusarov
,
T. A.
Wesolowski
, and
A.
Kovalenko
,
J. Phys. Chem. A
114
,
6082
(
2010
).
38.
K.
Kiewisch
,
C. R.
Jacob
, and
L.
Visscher
,
J. Chem. Theory Comput.
9
,
2425
(
2013
).
39.
F.
Tran
,
J.
Weber
,
T. A.
Wesolowski
,
F.
Cheikh
,
Y.
Ellinger
, and
F.
Pauzat
,
J. Phys. Chem. B
106
,
8689
(
2002
).
40.
A.
Lembarki
and
H.
Chermette
,
Phys. Rev. A
50
,
5328
(
1994
).
41.
42.
H.
Lee
,
C.
Lee
, and
R. G.
Parr
,
Phys. Rev. A
44
,
768
(
1991
).
43.
F.
Tran
and
T. A.
Wesolowski
, in
Recent Progress in Orbital-free Density Functional Theory
, edited by
T. A.
Wesolowsky
and
Y. A.
Wang
(
World Scientific
,
Singapore
,
2013
), pp.
429
442
.
44.
S.
Laricchia
,
E.
Fabiano
, and
F.
Della Sala
,
J. Chem. Phys.
133
,
164111
(
2010
).
45.
T. A.
Wesołowski
,
Phys. Rev. A
77
,
012504
(
2008
).
46.
C. R.
Jacob
,
T. A.
Wesolowski
, and
L.
Visscher
,
J. Chem. Phys.
123
,
174104
(
2005
).
47.
K.
Pernal
and
T.
Wesolowski
,
Int. J. Quantum Chem.
109
,
2520
(
2009
).
48.
J.
Tao
,
J. P.
Perdew
,
V. N.
Staroverov
, and
G. E.
Scuseria
,
Phys. Rev. Lett.
91
,
146401
(
2003
).
49.
J. P.
Perdew
,
A.
Ruzsinszky
,
G. I.
Csonka
,
L. A.
Constantin
, and
J.
Sun
,
Phys. Rev. Lett.
103
,
026403
(
2009
).
50.
L. A.
Constantin
,
L.
Chiodo
,
E.
Fabiano
,
I.
Bodrenko
, and
F.
Della Sala
,
Phys. Rev. B
84
,
045126
(
2011
).
51.
L. A.
Constantin
,
E.
Fabiano
, and
F.
Della Sala
,
Phys. Rev. B
86
,
035130
(
2012
).
52.
L. A.
Constantin
,
E.
Fabiano
, and
F.
Della Sala
,
J. Chem. Theory Comput.
9
,
2256
(
2013
).
53.
T.
Van Voorhis
and
G. E.
Scuseria
,
J. Chem. Phys.
109
,
400
(
1998
).
54.
H. L.
Schmider
and
A. D.
Becke
,
J. Chem. Phys.
109
,
8188
(
1998
).
55.
Y.
Zhao
and
D. G.
Truhlar
,
J. Chem. Phys.
125
,
194101
(
2006
).
56.
R.
Peverati
and
D. G.
Truhlar
,
J. Phys. Chem. Lett.
3
,
117
(
2012
).
57.
A.
Ruzsinszky
,
J.
Sun
,
B.
Xiao
, and
G. I.
Csonka
,
J. Chem. Theory Comput.
8
,
2078
(
2012
).
58.
J.
Sun
,
B.
Xiao
, and
A.
Ruzsinszky
,
J. Chem. Phys.
137
,
051101
(
2012
).
59.
J.
Sun
,
R.
Haunschild
,
B.
Xiao
,
I. W.
Bulik
,
G. E.
Scuseria
, and
J. P.
Perdew
,
J. Chem. Phys.
138
,
044113
(
2013
).
60.
J.
Sun
,
J. P.
Perdew
, and
A.
Ruzsinszky
,
Proc. Natl. Acad. Sci. U. S. A.
112
,
685
(
2015
).
61.
J.
Wellendorff
,
K. T.
Lundgaard
,
K. W.
Jacobsen
, and
T.
Bligaard
,
J. Chem. Phys.
140
,
144107
(
2014
).
62.
N.
Mardirossian
and
M.
Head-Gordon
,
J. Chem. Phys.
142
,
074111
(
2015
).
63.
L. A.
Constantin
,
E.
Fabiano
, and
F.
Della Sala
,
Phys. Rev. B
88
,
125112
(
2013
).
64.
L. A.
Constantin
,
A.
Terentjevs
,
F.
Della Sala
, and
E.
Fabiano
,
Phys. Rev. B
91
,
041120(R)
(
2015
).
65.
B.
Xiao
,
J.
Sun
,
A.
Ruzsinszky
,
J.
Feng
,
R.
Haunschild
,
G. E.
Scuseria
, and
J. P.
Perdew
,
Phys. Rev. B
88
,
184103
(
2013
).
66.
J.
Sun
,
B.
Xiao
,
Y.
Fang
,
R.
Haunschild
,
P.
Hao
,
A.
Ruzsinszky
,
G. I.
Csonka
,
G. E.
Scuseria
, and
J. P.
Perdew
,
Phys. Rev. Lett.
111
,
106401
(
2013
).
67.
V. N.
Staroverov
,
G. E.
Scuseria
,
J.
Tao
, and
J. P.
Perdew
,
Phys. Rev. B
69
,
075102
(
2004
).
68.
C.
Adamo
,
M.
Ernzerhof
, and
G. E.
Scuseria
,
J. Chem. Phys.
112
,
2643
(
2000
).
69.
K. E.
Riley
,
B. T.
Op’t Holt
, and
K. M.
Merz
,
J. Chem. Theory Comput.
3
,
407
(
2007
).
70.
M.
Andersen
,
L.
Hornekær
, and
B.
Hammer
,
Phys. Rev. B
86
,
085405
(
2012
).
71.
S.
Luo
,
Y.
Zhao
, and
D. G.
Truhlar
,
J. Phys. Chem. Lett.
3
,
2975
(
2012
).
72.
J.
Sun
,
M.
Marsman
,
A.
Ruzsinszky
,
G.
Kresse
, and
J. P.
Perdew
,
Phys. Rev. B
83
,
121410
(
2011
).
73.
P.
Hao
,
J.
Sun
,
B.
Xiao
,
A.
Ruzsinszky
,
G. I.
Csonka
,
J.
Tao
,
S.
Glindmeyer
, and
J. P.
Perdew
,
J. Chem. Theory Comput.
9
,
355
(
2013
).
74.
E.
Fabiano
,
L. A.
Constantin
, and
F.
Della Sala
,
J. Chem. Theory Comput.
10
,
3151
(
2014
).
75.
V. U.
Nazarov
and
G.
Vignale
,
Phys. Rev. Lett.
107
,
216402
(
2011
).
76.
F.
Zahariev
,
S. S.
Leang
, and
Mark S.
Gordon
,
J. Chem. Phys.
138
,
244108
(
2013
).
77.
A.
Seidl
,
A.
Görling
,
P.
Vogl
,
J. A.
Majewski
, and
M.
Levy
,
Phys. Rev. B
53
,
3764
(
1996
).
78.
O.
Gritsenko
, in
Recent Progress in Orbital-free Density Functional Theory
, edited by
T. A.
Wesolowsky
and
Y. A.
Wang
(
World Scientific
,
Singapore
,
2013
), pp.
355
365
.
79.
A. V.
Arbuznikov
and
M.
Kaupp
,
Chem. Phys. Lett.
381
,
495
(
2003
).
80.
A. V.
Arbuznikov
,
M.
Kaupp
,
V. G.
Malkin
,
R.
Reviakine
, and
O. L.
Malkina
,
Phys. Chem. Chem. Phys.
4
,
5467
(
2002
).
81.
M.
Humbert-Droz
,
X.
Zhou
,
S.
Shedge
, and
T.
Wesolowski
,
Theor. Chem. Acc.
133
,
1405
(
2013
).
82.
J.
Nafziger
and
A.
Wasserman
,
J. Phys. Chem. A
118
,
7623
(
2014
).
83.
Q.
Zhao
,
R. C.
Morrison
, and
R. G.
Parr
,
Phys. Rev. A
50
,
2138
(
1994
).
84.
Q.
Wu
and
W.
Yang
,
J. Chem. Phys.
118
,
2498
(
2003
).
85.
P.
de Silva
and
T. A.
Wesolowski
,
Phys. Rev. A
85
,
032518
(
2012
).
86.
O.
Roncero
,
M. P.
de Lara-Castells
,
P.
Villarreal
,
F.
Flores
,
J.
Ortega
,
M.
Paniagua
, and
A.
Aguado
,
J. Chem. Phys.
129
,
184104
(
2008
).
87.
O.
Roncero
,
A.
Zanchet
,
P.
Villarreal
, and
A.
Aguado
,
J. Chem. Phys.
131
,
234110
(
2009
).
88.
J. D.
Goodpaster
,
N.
Ananth
,
F. R.
Manby
, and
T. F.
Miller
III
,
J. Chem. Phys.
133
,
084103
(
2010
).
89.
J. D.
Goodpaster
,
T. A.
Barnes
, and
T. F.
Miller
III
,
J. Chem. Phys.
134
,
164108
(
2011
).
90.
S.
Kümmel
and
L.
Kronik
,
Rev. Mod. Phys.
80
,
3
(
2008
).
91.
C. R.
Jacob
,
J. Chem. Phys.
135
,
244102
(
2011
).
92.
A.
Heßelmann
,
A. W.
Götz
,
F.
Della Sala
,
F.
Manby
, and
A.
Görling
,
J. Chem. Phys.
127
,
054102
(
2007
).
93.
V. N.
Staroverov
,
G. E.
Scuseria
, and
E. R.
Davidson
,
J. Chem. Phys.
124
,
141103
(
2006
).
94.
T.
Heaton-Burgess
,
F. A.
Bulat
, and
W.
Yang
,
Phys. Rev. Lett.
98
,
256401
(
2007
).
95.
W.
Yang
,
R. G.
Parr
, and
C.
Lee
,
Phys. Rev. A
34
,
4586
(
1986
).
96.
D.
Garca-Aldea
and
J. E.
Alvarellos
,
J. Chem. Phys.
127
,
144109
(
2007
).
97.
P. W.
Ayers
,
R. G.
Parr
, and
A.
Nagy
,
Int. J. Quantum Chem.
90
,
309
(
2002
).
98.
L. H.
Thomas
,
Math. Proc. Cambridge Philos. Soc.
23
,
542
(
1926
).
99.
E.
Fermi
,
Rend. Accad. Naz. Lincei
48
,
73
(
1928
).
100.
E.
Fermi
,
Z. Phys.
6
,
602
(
1927
).
101.
C. F.
von Weizsäcker
,
Z. Phys. A
96
,
431
(
1935
).
102.
F.
Della Sala
,
E.
Fabiano
, and
L. A.
Constantin
,
Phys. Rev. B
91
,
035126
(
2015
).
103.
M.
Brack
,
B.
Jennings
, and
Y.
Chu
,
Phys. Lett. B
65
,
1
(
1976
).
104.
D. A.
Kirzhnits
,
Sov. Phys. JETP
5
,
64
(
1957
).
105.
D.
Lee
,
L. A.
Constantin
,
J. P.
Perdew
, and
K.
Burke
,
J. Chem. Phys.
130
,
034107
(
2009
).
106.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
107.
C.
Adamo
and
V.
Barone
,
J. Chem. Phys.
110
,
6158
(
1999
).
108.
J. P.
Perdew
,
M.
Ernzerhof
, and
K.
Burke
,
J. Chem. Phys.
105
,
9982
(
1996
).
109.
F.
Weigend
and
R.
Ahlrichs
,
Phys. Chem. Chem. Phys.
7
,
3297
(
2005
).
110.
D.
Rappoport
and
F.
Furche
,
J. Chem. Phys.
133
,
134105
(
2010
).
111.
TURBOMOLE V6.2, 2009, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007, available from http://www.turbomole.com.
112.
Y.
Zhao
and
D. G.
Truhlar
,
J. Phys. Chem. A
109
,
5656
(
2005
).
113.
Y.
Zhao
and
D. G.
Truhlar
,
J. Chem. Theory Comput.
1
,
415
(
2005
).
114.
P.
Ramos
,
M.
Papadakis
, and
M.
Pavanello
, “
Performance of frozen density embedding for modeling hole transfer reactions
,”
J. Phys. Chem. B.
(in press).
115.
J. D.
Goodpaster
,
T. A.
Barnes
,
F. R.
Manby
, and
T. F.
Miller III
,
J. Chem. Phys.
140
,
18A507
(
2014
).
You do not currently have access to this content.