We present the extension of Frozen Density Embedding (FDE) formulation of subsystem Density Functional Theory (DFT) to real-time Time Dependent Density Functional Theory (rt-TDDFT). FDE is a DFT-in-DFT embedding method that allows to partition a larger Kohn-Sham system into a set of smaller, coupled Kohn-Sham systems. Additional to the computational advantage, FDE provides physical insight into the properties of embedded systems and the coupling interactions between them. The extension to rt-TDDFT is done straightforwardly by evolving the Kohn-Sham subsystems in time simultaneously, while updating the embedding potential between the systems at every time step. Two main applications are presented: the explicit excitation energy transfer in real time between subsystems is demonstrated for the case of the Na4 cluster and the effect of the embedding on optical spectra of coupled chromophores. In particular, the importance of including the full dynamic response in the embedding potential is demonstrated.

2.
F. L.
Hirshfeld
,
Theor. Chim. Acta
44
,
129
(
1977
).
3.
R. S.
Mulliken
,
J. Chem. Phys.
23
,
1833
(
1955
).
4.
A. D.
Becke
,
J. Chem. Phys.
88
,
2547
(
1988
).
5.
C.
Fonseca Guerra
,
J.-W.
Handgraaf
,
E. J.
Baerends
, and
F. M.
Bickelhaupt
,
J. Comput. Chem.
25
,
189
(
2004
).
6.
T. A.
Wesolowski
and
A.
Warshel
,
J. Chem. Phys.
97
,
8050
(
1993
).
7.
C. R.
Jacob
and
J.
Neugebauer
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
,
325
(
2013
).
8.
W.
Yang
and
Q.
Wu
,
Phys. Rev. Lett.
89
,
143002
(
2002
).
9.
Q.
Wu
and
W.
Yang
,
J. Chem. Phys.
118
,
2498
(
2003
).
10.
J. D.
Goodpaster
,
N.
Ananth
,
F. R.
Manby
, and
T. F.
Miller
III
,
J. Chem. Phys.
133
,
084103
(
2010
).
11.
C.
Huang
,
M.
Pavone
, and
E. A.
Carter
,
J. Chem. Phys.
134
,
154110
(
2011
).
12.
M. H.
Cohen
and
A.
Wasserman
,
J. Phys. Chem. A
111
,
2229
(
2007
).
13.
A.
Krishtal
,
D.
Sinha
,
A.
Genova
, and
M.
Pavanello
, “
Subsystem density-functional theory as an effective tool for modeling ground and excited states, their dynamics, and many-body interactions
,”
J. Phys.: Condens. Matter
(to be published).
14.
C.
Daday
,
C.
König
,
O.
Valsson
,
J.
Neugebauer
, and
C.
Filippi
,
J. Chem. Theory Comput.
9
,
2355
(
2013
).
15.
C.
Daday
,
C.
König
,
J.
Neugebauer
, and
C.
Filippi
,
ChemPhysChem
15
,
3205
(
2014
).
16.
T. A.
Wesolowski
,
Phys. Rev. A
77
,
012504
(
2008
).
17.
T.
Klüner
,
N.
Govind
,
Y. A.
Wang
, and
E. A.
Carter
,
Phys. Rev. Lett.
86
,
5954
(
2001
).
18.
Y. A.
Bernard
,
M.
Dulak
,
J. W.
Kaminski
, and
T. A.
Wesolowski
,
J. Phys. A: Math. Theor.
41
,
055302
(
2008
).
19.
M.
Humbert-Droz
,
X.
Zhou
,
S. V.
Shedge
, and
T. A.
Wesolowski
,
Theor. Chem. Acc.
133
,
1405
(
2013
).
20.
P.
de Silva
and
T. A.
Wesolowski
,
J. Chem. Phys.
137
,
094110
(
2012
).
21.
C. R.
Jacob
,
J.
Neugebauer
, and
L.
Visscher
,
J. Comput. Chem.
29
,
1011
(
2008
).
22.
T. A.
Wesolowski
and
J.
Weber
,
Chem. Phys. Lett.
248
,
71
(
1996
).
23.
T. A.
Wesolowski
,
O.
Parisel
,
Y.
Ellinger
, and
J.
Weber
,
J. Phys. Chem. A
101
,
7818
(
1997
).
24.
A.
Genova
,
D.
Ceresoli
, and
M.
Pavanello
,
J. Chem. Phys.
141
,
174101
(
2014
).
25.
E. M.
González
,
L.
Guidoni
, and
C.
Molteni
,
Phys. Chem. Chem. Phys.
11
,
4556
(
2009
).
26.
D.
Lahav
and
T.
Klüner
,
J. Phys.: Condens. Matter
19
,
226001
(
2007
).
27.
M. E.
Casida
and
T. A.
Wesolowski
,
Int. J. Quantum Chem.
96
,
577
(
2004
).
28.
J.
Neugebauer
,
J. Chem. Phys.
126
,
134116
(
2007
).
29.
M. A.
Mosquera
,
D.
Jensen
, and
A.
Wasserman
,
Phys. Rev. Lett.
111
,
023001
(
2013
).
30.
C.
Huang
,
F.
Libisch
,
Q.
Peng
, and
E. A.
Carter
,
J. Chem. Phys.
140
,
124113
(
2014
).
31.
A. S. P.
Gomes
,
C. R.
Jacob
, and
L.
Visscher
,
Phys. Chem. Chem. Phys.
10
,
5353
(
2008
).
32.
A. S. P.
Gomes
and
C. R.
Jacob
,
Annu. Rep. Prog. Chem., Sect. C: Phys. Chem.
108
,
222
(
2012
).
33.
S. J. A.
van Gisbergen
,
F.
Kootstra
,
P. R. T.
Schipper
,
O. V.
Gritsenko
,
J. G.
Snijders
, and
E. J.
Baerends
,
Phys. Rev. A
57
,
2556
(
1998
).
34.
G.
Onida
,
L.
Reining
, and
A.
Rubio
,
Rev. Mod. Phys.
74
,
601
(
2002
).
35.
M. A. L.
Marques
and
E. K. U.
Gross
,
Annu. Rev. Phys. Chem.
55
,
427
(
2004
).
36.
M. E.
Casida
, “
Time-dependent density functional response theory for molecules
,” in
Recent Advances in Density Functional Methods Part I
, edited by
D. P.
Chong
(
World Scientific
,
Singapore
,
1995
), pp.
155
192
.
37.
K.
Yabana
and
G.
Bertsch
,
Phys. Rev. B
54
,
4484
(
1996
).
38.
X.
Qian
,
J.
Li
,
X.
Lin
, and
S.
Yip
,
Phys. Rev. B
73
,
035408
(
2006
).
39.
A.
Castro
,
M.
Marques
,
J.
Alonso
,
G.
Bertsch
, and
A.
Rubio
,
Eur. Phys. J. D
28
,
211
(
2004
).
40.
S.
Meng
and
E.
Kaxiras
,
Nano Lett.
10
,
1238
(
2010
).
41.
D.
Hofmann
,
T.
Körzdörfer
, and
S.
Kümmel
,
Phys. Rev. A
82
,
012509
(
2010
).
42.
M.
Iannuzzi
,
B.
Kirchner
, and
J.
Hutter
,
Chem. Phys. Lett.
421
,
16
(
2006
).
43.
F.
Shimojo
,
R. K.
Kalia
,
A.
Nakano
, and
P.
Vashishta
,
Comput. Phys. Commun.
140
,
303
(
2001
).
44.
S.
Liu
and
P. W.
Ayers
,
Phys. Rev. A
70
,
022501
(
2004
).
45.
O. V.
Gritsenko
, “
On the principal difference between the exact and approximate frozen-density embedding theory
,” in
Recent Advances in Orbital-Free Density Functional Theory
, edited by
T. A.
Wesolowski
and
Y. A.
Wang
(
World Scientific
,
Singapore
,
2013
), Chap. 12, pp.
355
365
.
46.
T. A.
Wesolowski
,
A.
Goursot
, and
J.
Weber
,
J. Chem. Phys.
115
,
4791
(
2001
).
47.
T. A.
Wesolowski
and
F.
Tran
,
J. Chem. Phys.
118
,
2072
(
2003
).
48.
T. A.
Wesolowski
,
J. Am. Chem. Soc.
126
,
11444
(
2004
).
49.
K.
Kiewisch
,
G.
Eickerling
,
M.
Reiher
, and
J.
Neugebauer
,
J. Chem. Phys.
128
,
044114
(
2008
).
50.
S.
Fux
,
C. R.
Jacob
,
J.
Neugebauer
,
L.
Visscher
, and
M.
Reiher
,
J. Chem. Phys.
132
,
164101
(
2010
).
51.
J.
Frenkel
,
Wave Mechanics
(
Clarendon
,
Oxford
,
1934
).
52.
P. A. M.
Dirac
,
Math. Proc. Cambridge Philos. Soc.
26
,
376
(
1930
).
53.
S.
Sawada
,
R.
Heather
,
B.
Jackson
, and
H.
Metiu
,
J. Chem. Phys.
83
,
3009
(
1985
).
54.
F. Y.
Hansen
,
N. E.
Henriksen
, and
G. D.
Billing
,
J. Chem. Phys.
90
,
3060
(
1989
).
55.
E.
Runge
and
E. K. U.
Gross
,
Phys. Rev. Lett.
52
,
997
(
1984
).
56.
R.
van Leeuwen
,
Phys. Rev. Lett.
80
,
1280
(
1998
).
57.
R.
van Leeuwen
,
Int. J. Mod. Phys. B
15
,
1969
(
2001
).
58.
G.
Vignale
,
Phys. Rev. A
77
,
062511
(
2008
).
59.
Time-Dependent Density-Functional Theory
, edited by
C. A.
Ullrich
(
Oxford, New York
,
2012
).
60.
M. H.
Cohen
and
A.
Wasserman
,
Phys. Rev. A
71
,
032515
(
2005
).
61.
R.
van Leeuwen
,
Phys. Rev. Lett.
82
,
3863
(
1999
).
62.
M.
Pavanello
,
J. Chem. Phys.
138
,
204118
(
2013
).
63.
D.
Vanderbilt
,
Phys. Rev. B
41
,
7892
(
1990
).
64.
K.
Laasonen
,
R.
Car
,
C.
Lee
, and
D.
Vanderbilt
,
Phys. Rev. B
43
,
6796
(
1991
).
65.
K.
Laasonen
,
A.
Pasquarello
,
R.
Car
,
C.
Lee
, and
D.
Vanderbilt
,
Phys. Rev. B
47
,
10142
(
1993
).
66.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
67.
A.
Ojanperä
,
V.
Havu
,
L.
Lehtovaara
, and
M.
Puska
,
J. Chem. Phys.
136
,
144103
(
2012
).
68.
J.
Crank
and
P.
Nicolson
,
Adv. Comput. Math.
6
,
207
(
1996
).
69.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
70.
K. F.
Garrity
,
J. W.
Bennett
,
K. M.
Rabe
, and
D.
Vanderbilt
,
Comput. Mater. Sci.
81
,
446
(
2014
).
71.
A.
Lembarki
and
H.
Chermette
,
Phys. Rev. A
50
,
5328
(
1994
).
72.
C. R.
Jacob
and
L.
Visscher
,
J. Chem. Phys.
128
,
155102
(
2008
).
73.
L.
Goerigk
and
S.
Grimme
,
Phys. Chem. Chem. Phys.
13
,
6670
(
2011
).
74.
R.
Kevorkyants
,
M.
Dulak
, and
T. A.
Wesolowski
,
J. Chem. Phys.
124
,
024104
(
2006
).
75.
R.
Kevorkyants
,
H.
Eshuis
, and
M.
Pavanello
,
J. Chem. Phys.
141
,
044127
(
2014
).
76.
S. M.
Beyhan
,
A. W.
Götz
, and
L.
Visscher
,
J. Chem. Phys.
138
,
094113
(
2013
).
77.
D.
Schlüns
,
K.
Klahr
,
C.
Mück-Lichtenfeld
,
L.
Visscher
, and
J.
Neugebauer
, “
Subsystem-DFT potential-energy curves for weakly interacting systems
,”
Phys. Chem. Chem. Phys.
(published online).
78.
J.
Neugebauer
,
E. J.
Baerends
,
M.
Nooijen
, and
J.
Autschbach
,
J. Chem. Phys.
122
,
234305
(
2005
).
79.
J.
Neugebauer
,
C. R.
Jacob
,
T. A.
Wesolowski
, and
E. J.
Baerends
,
J. Phys. Chem. A
109
,
7805
(
2005
).
80.
C. R.
Jacob
,
L.
Jensen
,
J.
Neugebauer
, and
L.
Visscher
,
Phys. Chem. Chem. Phys.
8
,
2349
(
2006
).
81.
J.
Neugebauer
and
E. J.
Baerends
,
J. Phys. Chem. A
110
,
8786
(
2006
).
82.
J.
Neugebauer
,
M. J.
Louwerse
,
E. J.
Baerends
, and
T. A.
Wesolowski
,
J. Chem. Phys.
122
,
094115
(
2005
).
84.
C.
König
and
J.
Neugebauer
,
ChemPhysChem
13
,
386
(
2012
).
85.
C.
König
,
N.
Schlüter
, and
J.
Neugebauer
,
J. Chem. Phys.
138
,
034104
(
2013
).
86.
J.
Neugebauer
,
C.
Curutchet
,
A.
Munoz-Losa
, and
B.
Mennucci
,
J. Chem. Theory Comput.
6
,
1843
(
2010
).
88.
T.
Förster
, “
Delocalized excitation and excitation transfer
,” in
Modern Quantum Chemistry. Part III: Action of Light and Organic Crystals
, edited by
O.
Sinanoǧlu
(
Academic Press
,
New York
,
1965
), pp.
93
137
.
89.
D. L.
Dexter
,
J. Chem. Phys.
21
,
836
(
1953
).
91.
A. S.
Davydov
,
Theory of Molecular Excitons
(
McGraw-Hill
,
New York
,
1962
).
92.
E.
Sagvolden
,
F.
Furche
, and
A.
Köhn
,
J. Chem. Theory Comput.
5
,
873
(
2009
).
93.
I.
Vasiliev
,
S.
Öğüt
, and
J.
Chelikowsky
,
Phys. Rev. B
65
,
115416
(
2002
).
You do not currently have access to this content.