We introduce two new thermostats, one of Langevin type and one of gradient (Brownian) type, for rigid body dynamics. We formulate rotation using the quaternion representation of angular coordinates; both thermostats preserve the unit length of quaternions. The Langevin thermostat also ensures that the conjugate angular momenta stay within the tangent space of the quaternion coordinates, as required by the Hamiltonian dynamics of rigid bodies. We have constructed three geometric numerical integrators for the Langevin thermostat and one for the gradient thermostat. The numerical integrators reflect key properties of the thermostats themselves. Namely, they all preserve the unit length of quaternions, automatically, without the need of a projection onto the unit sphere. The Langevin integrators also ensure that the angular momenta remain within the tangent space of the quaternion coordinates. The Langevin integrators are quasi-symplectic and of weak order two. The numerical method for the gradient thermostat is of weak order one. Its construction exploits ideas of Lie-group type integrators for differential equations on manifolds. We numerically compare the discretization errors of the Langevin integrators, as well as the efficiency of the gradient integrator compared to the Langevin ones when used in the simulation of rigid TIP4P water model with smoothly truncated electrostatic interactions. We observe that the gradient integrator is computationally less efficient than the Langevin integrators. We also compare the relative accuracy of the Langevin integrators in evaluating various static quantities and give recommendations as to the choice of an appropriate integrator.

1.
M.
Allen
and
D.
Tildesley
,
Computer Simulation of Liquids
(
Oxford University Press
,
Oxford
,
1987
).
2.
B.
Leimkuhler
and
S.
Reich
,
Simulating Hamiltonian Dynamics
(
Cambridge University Press
,
Cambridge
,
2005
).
3.
T.
Schlick
,
Molecular Modeling and Simulation: An Interdisciplinary Guide
, 2nd ed. (
Springer
,
New York
,
2010
).
4.
I.
Snook
,
The Langevin and Generalised Langevin Approach to the Dynamics of Atomic, Polymeric and Colloidal Systems
(
Elsevier
,
2006
).
5.
R. L.
Davidchack
,
R.
Handel
, and
M. V.
Tretyakov
,
J. Chem. Phys.
130
,
234101
(
2009
).
6.
G. N.
Milstein
and
M. V.
Tretyakov
,
Physica D
229
,
81
(
2007
).
7.
A.
Bulgac
and
D.
Kusnezov
,
Phys. Rev. A
42
,
5045
(
1990
).
8.
A. A.
Samoletov
,
C. P.
Dettmann
, and
M. A. J.
Chaplain
,
J. Stat. Phys.
128
,
1321
(
2007
).
9.
B.
Leimkuhler
,
Phys. Rev. E
81
,
026703
(
2010
).
10.
T. F.
Miller
III
,
M.
Eleftheriou
,
P.
Pattnaik
,
A.
Ndirango
,
D.
Newns
, and
G. J.
Martyna
,
J. Chem. Phys.
116
,
8649
(
2002
).
D. J.
Evans
and
S.
Murad
,
Mol. Phys.
34
,
327
(
1977
).
12.
A.
Dullweber
,
B.
Leimkuhler
, and
R.
McLachlan
,
J. Chem. Phys.
107
,
5840
(
1997
).
13.
I. P.
Omelyan
,
J. Chem. Phys.
127
,
044102
(
2007
);
[PubMed]
R.
van Zon
,
I. P.
Omelyan
, and
J.
Schofield
,
J. Chem. Phys.
128
,
136102
(
2008
);
[PubMed]
I. P.
Omelyan
,
Phys. Rev. E
78
,
026702
(
2008
).
14.
G. N.
Milstein
and
M. V.
Tretyakov
,
Stochastic Numerics for Mathematical Physics
(
Springer
,
Berlin
,
2004
).
15.
T. E.
Ouldridge
,
R. L.
Hoare
,
A. A.
Louis
,
J. P. K.
Doye
,
J.
Bath
, and
A. J.
Turberfield
,
ACS Nano
7
,
2479
(
2013
).
16.
T. E.
Ouldridge
,
P.
Šulc
,
F.
Romano
,
J. P. K.
Doye
, and
A. A.
Louis
,
Nucl. Acids Res.
41
,
8886
(
2013
).
17.
N.
Srinivas
,
T. E.
Ouldridge
,
P.
Šulc
,
J.
Schaeffer
,
B.
Yurke
,
A. A.
Louis
,
J. P. K.
Doye
, and
E.
Winfree
,
Nucl. Acids Res.
41
,
10641
(
2013
).
18.
R. R. F.
Machinek
,
T. E.
Ouldridge
,
N. E. C.
Haley
,
J.
Bath
, and
A. J.
Turberfield
,
Nat. Commun.
5
,
5324
(
2014
).
19.
E.
Vanden-Eijnden
and
G.
Ciccotti
,
Chem. Phys. Lett.
429
,
310
(
2006
).
20.
X.
Sun
,
T.
Lin
, and
J. D.
Gezelter
,
J. Chem. Phys.
128
,
234107
(
2008
).
21.
S. L.
Altmann
,
Rotations, Quaternions, and Double Groups
(
Dover Publications
,
New York
,
1986
).
22.
W. B.
Heard
,
Rigid Body Mechanics
(
Wiley
,
Weinheim
,
2006
).
23.

Note that in Eq. (3) of Ref. 5 the notation ∇qj for the directional derivative was used in ∇qjU while ∇qjV meant the conventional gradient.

24.
R. Z.
Hasminskii
,
Stochastic Stability of Differential Equations
(
Sijthoff & Noordhoff
,
1980
).
25.
C.
Soize
,
The Fokker-Planck Equation for Stochastic Dynamical Systems and Its Explicit Steady State Solutions
(
World Scientific
,
Singapore
,
1994
).
26.
P. J.
Rossky
,
J. D.
Doll
, and
H. L.
Friedman
,
J. Chem. Phys.
69
,
4628
(
1978
).
27.
B.
Leimkuhler
and
C.
Matthews
,
Appl. Math. Res. Express
2013
,
34
(
2013
).
28.
E.
Hairer
,
C.
Lubich
, and
G.
Wanner
,
Geometric Numerical Integration
,
Springer Ser. Comput. Math.
Vol.
31
(
Springer-Verlag
,
Berlin
,
2006
).
29.
G. N.
Milstein
,
Y. M.
Repin
, and
M. V.
Tretyakov
,
SIAM J. Numer. Anal.
40
,
1583
(
2002
).
30.
G. N.
Milstein
and
M. V.
Tretyakov
,
IMA J. Numer. Anal.
23
,
593
(
2003
).
31.
N.
Grønbech-Jensen
and
O.
Farago
,
Mol. Phys.
111
,
983
(
2013
).
32.
R. D.
Skeel
, in
Graduate Student’s Guide to Numerical Analysis’98
, edited by
M.
Ainsworth
,
J.
Levesley
, and
M.
Marletta
(
Springer
,
1999
), pp.
118
176
.
33.
F.
Castell
and
J.
Gaines
,
Math. Comput. Simul.
38
,
13
(
1995
).
34.
N.
Ikeda
and
S.
Watanabe
,
Stochastic Differential Equations and Diffusion Processes
(
North-Holland
,
Amsterdam
,
1981
).
35.
K. D.
Elworthy
,
Stochastic Differential Equations on Manifolds
,
London Mathematical Society Lecture Note Series
Vol.
70
(
Cambridge University Press
,
Cambridge
,
1982
).
36.
L. C. G.
Rogers
and
D.
Williams
,
Diffusions, Markov Processes, and Martingales
(
Cambridge University Press
,
Cambridge
,
2000
), Vol.
1
.
37.
G. S.
Chirikjian
,
Stochastic Models, Information Theory, and Lie Groups
,
Applied and Numerical Harmonic Analysis
Vol.
1
(
Birkhäuser
,
Basel
,
2009
).
38.
R. L.
Davidchack
,
J. Comput. Phys.
229
,
9323
(
2010
).
39.
A. A.
Chialvo
,
J. M.
Simonson
,
P. T.
Cummings
, and
P. G.
Kusalik
,
J. Chem. Phys.
114
,
6514
(
2001
).
40.
D.
Talay
and
L.
Tubaro
,
Stochastic Anal. Appl.
8
,
483
(
1990
).
41.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation
, 2nd ed. (
Academic Press
,
New York
,
2002
).
42.
J. C.
Mattingly
,
A. M.
Stuart
, and
M. V.
Tretyakov
,
SIAM J. Numer. Anal.
48
,
552
(
2010
).
43.
J. H.
Mentink
,
M. V.
Tretyakov
,
A.
Fasolino
,
M. I.
Katsnelson
, and
T.
Rasing
,
J. Phys.: Condens. Matter
22
,
176001
(
2010
).
44.
B.
Leimkuhler
,
C.
Matthews
, and
M. V.
Tretyakov
,
Proc. R. Soc. A
470
,
20140120
(
2014
).
45.
N.
Grønbech-Jensen
and
O.
Farago
,
J. Chem. Phys.
141
,
194108
(
2014
).
46.
T.
Politi
, “
A formula for the exponential of a real skew-symmetric matrix of order 4
,”
BIT Numer. Math.
41
,
842
845
(
2001
).
You do not currently have access to this content.