Carbon nanotubes (CNTs) are promising for water transport through membranes and for use as nano-pumps. The development of CNT-based nanofluidic devices, however, requires a better understanding of the properties of water molecules in CNTs because they can be very different from those in the bulk. Using all-atom molecular dynamics simulations, we investigate the effect of axial electric fields on the structure of water molecules in CNTs having diameters ranging from (7,7) to (10,10). The water dipole moments were aligned parallel to the electric field, which increases the density of water inside the CNTs and forms ordered ice-like structures. The electric field induces the transition from liquid to ice nanotubes in a wide range of CNT diameters. Moreover, we found an increase in the lifetime of hydrogen bonds for water structures in the CNTs. Fast librational motion breaks some hydrogen bonds, but the molecular pairs do not separate and the hydrogen bonds reform. Thus, hydrogen bonds maintain the water structure in the CNTs, and the water molecules move collectively, decreasing the axial diffusion coefficient and permeation rate.

1.
G.
Hummer
,
J. C.
Rasaiah
, and
J. P.
Noworyta
,
Nature
414
,
188
(
2001
).
2.
M.
Majumder
,
N.
Chopra
,
R.
Andrews
, and
B. J.
Hinds
,
Nature
438
,
44
(
2005
).
3.
J. K.
Holt
,
H. G.
Park
,
Y.
Wang
,
M.
Stadermann
,
A. B.
Artyukhin
,
C. P.
Grigoropoulos
,
A.
Noy
, and
O.
Bakajin
,
Science
312
,
1034
(
2006
).
4.
M.
Whitby
,
L.
Cagnon
,
M.
Thanou
, and
N.
Quirke
,
Nano Lett.
8
,
2632
(
2008
).
5.
X.
Qin
,
Q.
Yuan
,
Y.
Zhao
,
S.
Xie
, and
Z.
Liu
,
Nano Lett.
11
,
2173
(
2011
).
6.
B.
Corry
,
Energy Environ. Sci.
4
,
751
(
2011
).
7.
J.
Goldsmith
and
C. C.
Martens
,
J. Phys. Chem. Lett.
1
,
528
(
2009
).
8.
M.
Suk
and
N.
Aluru
,
Phys. Chem. Chem. Phys.
11
,
8614
(
2009
).
9.
A.
Kalra
,
S.
Garde
, and
G.
Hummer
,
Proc. Natl. Acad. Sci. U. S. A.
100
,
10175
(
2003
).
10.
X.
Gong
,
J.
Li
,
H.
Lu
,
R.
Wan
,
J.
Li
,
J.
Hu
, and
H.
Fang
,
Nat. Nanotechnol.
2
,
709
(
2007
).
11.
M.
Longhurst
and
N.
Quirke
,
Nano Lett.
7
,
3324
(
2007
).
12.
Z.
Insepov
,
D.
Wolf
, and
A.
Hassanein
,
Nano Lett.
6
,
1893
(
2006
).
13.
J.
Kou
,
X.
Zhou
,
H.
Lu
,
Y.
Xu
,
F.
Wu
, and
J.
Fan
,
Soft Matter
8
,
12111
(
2012
).
14.
K. F.
Rinne
,
S.
Gekle
,
D. J.
Bonthuis
, and
R. R.
Netz
,
Nano Lett.
12
,
1780
(
2012
).
15.
Y.
Wang
,
Y.
Zhao
, and
J.
Huang
,
J. Phys. Chem. B
115
,
13275
(
2011
).
16.
A.
Bianco
,
K.
Kostarelos
, and
M.
Prato
,
Curr. Opin. Chem. Biol.
9
,
674
(
2005
).
17.
K.
Kostarelos
,
A.
Bianco
, and
M.
Prato
,
Nat. Nanotechnol.
4
,
627
(
2009
).
18.
H.
Nagai
,
Y.
Okazaki
,
S. H.
Chew
,
N.
Misawa
,
Y.
Yamashita
,
S.
Akatsuka
,
T.
Ishihara
,
K.
Yamashita
,
Y.
Yoshikawa
,
H.
Yasui
 et al,
Proc. Natl. Acad. Sci. U. S. A.
108
,
E1330
(
2011
).
19.
C.
Fabbro
,
H.
Ali-Boucetta
,
T.
Da Ros
,
K.
Kostarelos
,
A.
Bianco
, and
M.
Prato
,
Chem. Commun.
48
,
3911
(
2012
).
20.
K.
Koga
,
G.
Gao
,
H.
Tanaka
, and
X. C.
Zeng
,
Nature
412
,
802
(
2001
).
21.
J.
Bai
,
J.
Wang
, and
X. C.
Zeng
,
Proc. Natl. Acad. Sci. U. S. A.
103
,
19664
(
2006
).
22.
W. H.
Noon
,
K. D.
Ausman
,
R. E.
Smalley
, and
J.
Ma
,
Chem. Phys. Lett.
355
,
445
(
2002
).
23.
Y.
Liu
,
Q.
Wang
,
T.
Wu
, and
L.
Zhang
,
J. Chem. Phys.
123
,
234701
(
2005
).
24.
D.
Takaiwa
,
I.
Hatano
,
K.
Koga
, and
H.
Tanaka
,
Proc. Natl. Acad. Sci. U. S. A.
105
,
39
(
2008
).
25.
Y.
Maniwa
,
H.
Kataura
,
M.
Abe
,
S.
Suzuki
,
Y.
Achiba
,
H.
Kira
, and
K.
Matsuda
,
J. Phys. Soc. Jpn.
71
,
2863
(
2002
).
26.
Y.
Maniwa
,
H.
Kataura
,
M.
Abe
,
A.
Udaka
,
S.
Suzuki
,
Y.
Achiba
,
H.
Kira
,
K.
Matsuda
,
H.
Kadowaki
, and
Y.
Okabe
,
Chem. Phys. Lett.
401
,
534
(
2005
).
27.
S.
Ghosh
,
K.
Ramanathan
, and
A.
Sood
,
EPL (Europhys. Lett.)
65
,
678
(
2004
).
28.
A. I.
Kolesnikov
,
J.-M.
Zanotti
,
C.-K.
Loong
,
P.
Thiyagarajan
,
A. P.
Moravsky
,
R. O.
Loutfy
, and
C. J.
Burnham
,
Phys. Rev. Lett.
93
,
035503
(
2004
).
29.
O.
Byl
,
J.-C.
Liu
,
Y.
Wang
,
W.-L.
Yim
,
J. K.
Johnson
, and
J. T.
Yates
,
J. Am. Chem. Soc.
128
,
12090
(
2006
).
30.
A.
Philippsen
,
W.
Im
,
A.
Engel
,
T.
Schirmer
,
B.
Roux
, and
D. J.
Müller
,
Biophys. J.
82
,
1667
(
2002
).
31.
M. L.
Berkowitz
,
D. L.
Bostick
, and
S.
Pandit
,
Chem. Rev.
106
,
1527
(
2006
).
32.
S.
Vaitheeswaran
,
J. C.
Rasaiah
, and
G.
Hummer
,
J. Chem. Phys.
121
,
7955
(
2004
).
33.
S.
Joseph
and
N.
Aluru
,
Phys. Rev. Lett.
101
,
064502
(
2008
).
34.
J.
Su
and
H.
Guo
,
ACS Nano
5
,
351
(
2010
).
35.
Z.
Fu
,
Y.
Luo
,
J.
Ma
, and
G.
Wei
,
J. Chem. Phys.
134
,
154507
(
2011
).
36.
X.
Wu
,
L.
Lu
,
Y.
Zhu
,
M.
Wei
,
X.
Guo
, and
X.
Lu
,
Mol. Simul.
38
,
1094
(
2012
).
37.
Z.
Qian
,
Z.
Fu
, and
G.
Wei
,
J. Chem. Phys.
140
,
154508
(
2014
).
38.
Y.
He
,
G.
Sun
,
K.
Koga
, and
L.
Xu
,
Sci. Rep.
4
,
6596
(
2014
).
39.
D. J.
Bonthuis
,
K.
Falk
,
C. N.
Kaplan
,
D.
Horinek
,
A. N.
Berker
,
L.
Bocquet
, and
R. R.
Netz
,
Phys. Rev. Lett.
105
,
209401
(
2010
).
40.
D. J.
Bonthuis
,
K. F.
Rinne
,
K.
Falk
,
C. N.
Kaplan
,
D.
Horinek
,
A. N.
Berker
,
L.
Bocquet
, and
R. R.
Netz
,
J. Phys.: Condens. Matter
23
,
184110
(
2011
).
41.
H.
Berendsen
,
J.
Postma
,
W.
van Gunsteren
,
J.
Hermans
 et al,
Intermol. Forces
14
,
331
(
1981
).
42.
B.
Hess
,
C.
Kutzner
,
D.
van der Spoel
, and
E.
Lindahl
,
J. Chem. Theory Comput.
4
,
435
(
2008
).
43.
T.
Darden
,
D.
York
, and
L.
Pedersen
,
J. Chem. Phys.
98
,
10089
(
1993
).
44.
J.-P.
Ryckaert
,
G.
Ciccotti
, and
H. J.
Berendsen
,
J. Comput. Phys.
23
,
327
(
1977
).
45.
S.
Nosé
,
J. Chem. Phys.
81
,
511
(
1984
).
46.
W. G.
Hoover
,
Phys. Rev. A
31
,
1695
(
1985
).
47.
M.
Parrinello
and
A.
Rahman
,
J. Appl. Phys.
52
,
7182
(
1981
).
48.
J.
Martí
,
G.
Nagy
,
M.
Gordillo
, and
E.
Guardia
,
J. Chem. Phys.
124
,
094703
(
2006
).
49.
M.
Gordillo
and
J.
Martí
,
Phys. Rev. B
78
,
075432
(
2008
).
50.
M.
Gordillo
,
G.
Nagy
, and
J.
Martí
,
J. Chem. Phys.
123
,
054707
(
2005
).
51.
See supplementary material at http://dx.doi.org/10.1063/1.4914462 for charge density distribution, internal electric field, and time evolution of the Lindemann index.
52.
J.
Wang
,
Y.
Zhu
,
J.
Zhou
, and
X.-H.
Lu
,
Phys. Chem. Chem. Phys.
6
,
829
(
2004
).
53.
D.
Takaiwa
,
K.
Koga
, and
H.
Tanaka
,
Mol. Simul.
33
,
127
(
2007
).
54.
J.
Kaelberer
and
R. D.
Etters
,
J. Chem. Phys.
66
,
3233
(
1977
).
55.
Y.
Zhou
,
M.
Karplus
,
K. D.
Ball
, and
R. S.
Berry
,
J. Chem. Phys.
116
,
2323
(
2002
).
56.
F.
Ding
,
K.
Bolton
, and
A.
Rosén
,
Eur. Phys. J. D
34
,
275
(
2005
).
57.
K.
Zhang
,
G. M.
Stocks
, and
J.
Zhong
,
Nanotechnol.
18
,
285703
(
2007
).
58.
J.
Martí
,
J. Chem. Phys.
110
,
6876
(
1999
).
59.
M.
Gordillo
and
J.
Martí
,
Chem. Phys. Lett.
329
,
341
(
2000
).
60.
A.
Luzar
and
D.
Chandler
,
Nature
379
,
55
(
1996
).
61.
S.
Paul
and
A.
Chandra
,
Chem. Phys. Lett.
386
,
218
(
2004
).
62.
L.
Figueras
and
J.
Faraudo
,
Mol. Simul.
38
,
23
(
2012
).
63.
W.-H.
Zhao
,
J.
Bai
,
L.-F.
Yuan
,
J.
Yang
, and
X. C.
Zeng
,
Chem. Sci.
5
,
1757
(
2014
).
64.
H.
Qiu
and
W.
Guo
,
Phys. Rev. Lett.
110
,
195701
(
2013
).

Supplementary Material

You do not currently have access to this content.