The binding in small Cr clusters is re-investigated, where the correct description of the dimer in three charge states is used as criterion to assign the most suitable density functional theory approximation. The difficulty in chromium arises from the subtle interplay between energy gain from hybridization and energetic cost due to exchange between s and d based molecular orbitals. Variations in published bond lengths and binding energies are shown to arise from insufficient numerical representation of electron density and Kohn-Sham wave-functions. The best functional performance is found for gradient corrected (GGA) functionals and meta-GGAs, where we find severe differences between functionals from the same family due to the importance of exchange. Only the “best fit” from Bayesian error estimation is able to predict the correct energetics for all three charge states unambiguously. With this knowledge, we predict small bond-lengths to be exclusively present in Cr2 and Cr 2 . Already for the dimer cation, solely long bond-lengths appear, similar to what is found in the trimer and in chromium bulk.

1.
S. N.
Khanna
,
B. K.
Rao
, and
P.
Jena
,
Phys. Rev. Lett.
89
,
016803
(
2002
).
2.
L.
Wallace
and
K.
Hinkle
,
Astrophys. J.
700
,
720
(
2009
).
3.
M. M.
Goodgame
and
W. A.
Goddard
,
J. Phys. Chem.
85
,
215
(
1981
).
4.
P.
Atha
and
I.
Hillier
,
Mol. Phys.
45
,
285
(
1982
).
5.
B. O.
Roos
and
P.-Å.
Malmqvist
,
Phys. Chem. Chem. Phys.
6
,
2919
(
2004
).
6.
B. O.
Roos
and
K.
Andersson
,
Chem. Phys. Lett.
245
,
215
(
1995
).
7.
K.
Pierloot
,
Int. J. Quantum Chem.
111
,
3291
(
2011
).
8.
K.
Hongo
and
R.
Maezono
,
Int. J. Quantum Chem.
112
,
1243
(
2012
).
9.
V. E.
Bondybey
and
J. H.
English
,
Chem. Phys. Lett.
94
,
443
(
1983
).
10.
N. A.
Baykara
,
B. N.
McMaster
, and
D. R.
Salahub
,
Mol. Phys.
52
,
891
(
1984
).
11.
B.
Simard
,
M.-A.
Lebeault-Dorget
,
A.
Marijnissen
, and
J. J.
ter Meulen
,
J. Chem. Phys.
108
,
9668
(
1998
).
12.
B. O.
Roos
,
A. C.
Borin
, and
L.
Gagliardi
,
Angew. Chem., Int. Ed.
46
,
1469
(
2007
).
13.
J. T.
Lau
,
K.
Hirsch
,
A.
Langenberg
,
J.
Probst
,
R.
Richter
,
J.
Rittmann
,
M.
Vogel
,
V.
Zamudio-Bayer
,
T.
Möller
, and
B.
von Issendorff
,
Phys. Rev. B
79
,
241102
(
2009
).
14.
Y.
Yamada
,
K.
Hongo
,
K.
Egashira
,
Y.
Kita
,
U.
Nagashima
, and
M.
Tachikawa
,
Chem. Phys. Lett.
555
,
84
(
2013
).
15.
CRC Handbook of Chemistry and Physics
, 89th ed., edited by
D. R.
Lide
(
CRC Press
,
Boca Raton
,
2008-2009
).
16.
A. W.
Overhauser
,
Phys. Rev.
128
,
1437
(
1962
).
17.
E.
Fawcett
,
Rev. Mod. Phys.
60
,
209
(
1988
).
18.
H.
Zabel
,
J. Phys.: Condens. Matter
11
,
9303
(
1999
).
19.
R.
Hafner
,
D.
Spisák
,
R.
Lorenz
, and
J.
Hafner
,
J. Phys.: Condens. Matter
13
,
L239
(
2001
).
20.
V.
Vanhoof
,
M.
Rots
, and
S.
Cottenier
,
Phys. Rev. B
80
,
184420
(
2009
).
21.
V. M.
Uzdin
and
C.
Demangeat
,
J. Phys.: Condens. Matter
18
,
2717
(
2006
).
22.
S.
Blügel
,
D.
Pescia
, and
P. H.
Dederichs
,
Phys. Rev. B
39
,
1392
(
1989
).
23.
P.-J.
Hsu
,
T.
Mauerer
,
W.
Wu
, and
M.
Bode
,
Phys. Rev. B
87
,
115437
(
2013
).
24.
H.
Auweter
,
R.
Feser
,
H.
Jakusch
,
M. W.
Müller
,
N.
Müller
,
E.
Schwab
, and
R. J.
Veitch
,
IEEE Trans. Magn.
26
,
66
(
1990
).
25.
A.
Wachowiak
,
J.
Wiebe
,
M.
Bode
,
O.
Pietzsch
,
M.
Morgenstern
, and
R.
Wiesendanger
,
Science
298
,
577
(
2002
).
26.
A.
Kubetzka
,
M.
Bode
,
O.
Pietzsch
, and
R.
Wiesendanger
,
Phys. Rev. Lett.
88
,
057201
(
2002
).
27.
A.
Schlenhoff
,
S.
Krause
,
G.
Herzog
, and
R.
Wiesendanger
,
Appl. Phys. Lett.
97
,
083104
(
2010
).
28.
R.
Wiesendanger
,
H.-J.
Güntherodt
,
G.
Güntherodt
,
R. J.
Gambino
, and
R.
Ruf
,
Phys. Rev. Lett.
65
,
247
(
1990
).
29.
D. P.
DiLella
,
W.
Limm
,
R. H.
Lipson
,
M.
Moskovits
, and
K. V.
Taylor
,
J. Chem. Phys.
77
,
5263
(
1982
).
30.
L.
Fang
,
B.
Davis
,
H.
Lu
, and
J. R.
Lombardi
,
J. Phys. Chem. A
105
,
9375
(
2001
).
31.
M.
Ratschek
,
M.
Koch
, and
W. E.
Ernst
,
J. Chem. Phys.
136
,
104201
(
2012
).
32.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
33.
H.
Cheng
and
L.-S.
Wang
,
Phys. Rev. Lett.
77
,
51
(
1996
).
34.
L.-S.
Wang
,
H.
Wu
, and
H.
Cheng
,
Phys. Rev. B
55
,
12884
(
1997
).
35.
P.
Ruiz-Díaz
,
J. L.
Ricardo-Chávez
,
J.
Dorantes-Dávila
, and
G. M.
Pastor
,
Phys. Rev. B
81
,
224431
(
2010
).
36.
J. I.
Martinez
and
J. A.
Alonso
,
Phys. Rev. B
76
,
205409
(
2007
).
37.
J. J.
Mortensen
,
K.
Kaasbjerg
,
S. L.
Frederiksen
,
J. K.
Nørskov
,
J. P.
Sethna
, and
K. W.
Jacobsen
,
Phys. Rev. Lett.
95
,
216401
(
2005
).
38.
J. P.
Perdew
,
A.
Ruzsinszky
,
G. I.
Csonka
,
L. A.
Constantin
, and
J.
Sun
,
Phys. Rev. Lett.
103
,
026403
(
2009
).
39.
J. J.
Mortensen
,
L. B.
Hansen
, and
K. W.
Jacobsen
,
Phys. Rev. B
71
,
035109
(
2005
).
40.
J.
Enkovaara
,
C.
Rostgaard
,
J. J.
Mortensen
,
J.
Chen
,
M.
Dułak
,
L.
Ferrighi
,
J.
Gavnholt
,
C.
Glinsvad
,
V.
Haikola
,
H. A.
Hansen
,
H. H.
Kristoffersen
,
M.
Kuisma
,
A. H.
Larsen
,
L.
Lehtovaara
,
M.
Ljungberg
,
O.
Lopez-Acevedo
,
P. G.
Moses
,
J.
Ojanen
,
T.
Olsen
,
V.
Petzold
,
N. A.
Romero
,
J.
Stausholm-Møller
,
M.
Strange
,
G. A.
Tritsaris
,
M.
Vanin
,
M.
Walter
,
B.
Hammer
,
H.
Häkkinen
,
G. K. H.
Madsen
,
R. M.
Nieminen
,
J. K.
Nørskov
,
M.
Puska
,
T. T.
Rantala
,
J.
Schiøtz
,
K. S.
Thygesen
, and
K. W.
Jacobsen
,
J. Phys.: Condens. Matter
22
,
253202
(
2010
).
41.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
42.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
43.
M.
Valiev
,
E. J.
Bylaska
, and
J. H.
Weare
,
J. Chem. Phys.
119
,
5955
(
2003
).
44.
D. D.
Koelling
and
B. N.
Harmon
,
J. Phys. C: Solid State Phys.
10
,
3107
(
1977
).
45.
J. P.
Perdew
,
M.
Ernzerhof
, and
K.
Burke
,
J. Chem. Phys.
105
,
9982
(
1996
).
46.
N.
Desmarais
,
F. A.
Reuse
, and
S. N.
Khanna
,
J. Chem. Phys.
112
,
5576
(
2000
).
47.
M.
Valiev
,
E. J.
Bylaska
,
N.
Govind
,
K.
Kowalski
,
T. P.
Straatsma
,
H. J. J.
Van Dam
,
D.
Wang
,
J.
Nieplocha
,
E.
Apra
,
T. L.
Windus
, and
W. A.
de Jong
,
Comput. Phys. Commun.
181
,
1477
(
2010
).
48.
N.
Godbout
,
D. R.
Salahub
,
J.
Andzelm
, and
E.
Wimmer
,
Can. J. Chem.
70
,
560
(
1992
).
49.
C.
Sosa
,
J.
Andzelm
,
B. C.
Elkin
,
E.
Wimmer
,
K. D.
Dobbs
, and
D. A.
Dixon
,
J. Phys. Chem.
96
,
6630
(
1992
).
50.
A. J. H.
Wachters
,
J. Chem. Phys.
52
,
1033
(
1970
).
51.
P. J.
Hay
,
J. Chem. Phys.
66
,
4377
(
1977
).
52.
K.
Raghavachari
and
G. W.
Trucks
,
J. Chem. Phys.
91
,
1062
(
1989
).
53.
N. B.
Balabanov
and
K. A.
Peterson
,
J. Chem. Phys.
123
,
064107
(
2005
).
54.
M.
Douglas
and
N. M.
Kroll
,
Ann. Phys.
82
,
89
(
1974
).
55.
R.
van Leeuwen
and
E. J.
Baerends
,
Phys. Rev. A
49
,
2421
(
1994
).
56.
A.
Wasserman
,
N. T.
Maitra
, and
K.
Burke
,
Phys. Rev. Lett.
91
,
263001
(
2003
).
57.
J.
Paier
,
R.
Hirschl
,
M.
Marsman
, and
G.
Kresse
,
J. Chem. Phys.
122
,
234102
(
2005
).
58.
K.
Lejaeghere
,
V.
Van Speybroeck
,
G.
Van Oost
, and
S.
Cottenier
,
Crit. Rev. Solid State Mater. Sci.
39
,
1
(
2014
).
59.
A.
Kramida
,
Yu.
Ralchenko
,
J.
Reader
, and
NIST ASD Team
,
NIST Atomic Spectra Database (ver. 5.1)
(
National Institute of Standards and Technology
,
Gaithersburg, MD
,
2013
), online, available: http://physics.nist.gov/asd; accessed May 30, 2014.
60.
J.
Bartmess
, “
Ion energetics data
,”
NIST Chemistry WebBook
,
NIST Standard Reference Database Number 69
edited by
P. J.
Linstrom
and
W. G.
Mallard
(
National Institute of Standards and Technology
,
Gaithersburg, MD 20899
,
2005
).
61.
J. P.
Perdew
and
Y.
Wang
,
Phys. Rev. B
45
,
13244
(
1992
).
62.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
63.
Y.
Zhang
and
W.
Yang
,
Phys. Rev. Lett.
80
,
890
(
1998
).
64.
B.
Hammer
,
L. B.
Hansen
, and
J. K.
Nørskov
,
Phys. Rev. B
59
,
7413
(
1999
).
65.
J.
Tao
,
J. P.
Perdew
,
V. N.
Staroverov
, and
G. E.
Scuseria
,
Phys. Rev. Lett.
91
,
146401
(
2003
).
66.
C.
Adamo
and
V.
Barone
,
Chem. Phys. Lett.
298
,
113
119
(
1998
).
67.
T.
Müller
,
J. Phys. Chem. A
113
,
12729
(
2009
).
68.
B. O.
Roos
,
Collect. Czech. Chem. Commun.
68
,
265
(
2003
).
69.
Y.
Kurashige
and
T.
Yanai
,
J. Chem. Phys.
135
,
094104
(
2011
).
70.
D.
Hobbs
,
G.
Kresse
, and
J.
Hafner
,
Phys. Rev. B
62
,
11556
(
2000
).
71.
G. L.
Gutsev
and
C. W.
Bauschlicher
, Jr.
,
J. Phys. Chem. A
107
,
4755
(
2003
).
72.
K. E.
Edgecombe
and
A. D.
Becke
,
Chem. Phys. Lett.
244
,
427
(
1995
).
73.
A. D.
McLean
and
B.
Liu
,
Chem. Phys. Lett.
101
,
144
(
1983
).
74.

In DFT only the spin projection can be specified, but not the total spin.89 

75.

We define the spin localization p as the difference between the overall spin polarization np=drn(r)n(r) and the sum of its local projections on the atoms anpa divided by the number of atoms, i.e., p=a|npa||np|/2. The local spin density nσa,σ=, was normalized to the total spin density via aVadrnσa(r)=drnσ(r), where the local integration goes only over the atoms augmentation sphere Va. An effective bond order is obtained by subtraction of the maximal bond order (6 in Cr2) by p.

76.
L.
Noodleman
,
J. Chem. Phys.
74
,
5737
(
1981
).
77.
C.-X.
Su
,
D. A.
Hales
, and
P. B.
Armentrout
,
Chem. Phys. Lett.
201
,
199
(
1993
).
78.

The minima of the AF and FM states are practically degenerate in RPBE, see Fig. 5 below.

79.

The influence of relativistic effects on the neutral dimer was already shown by Andersson et al.90 and pointed out by Roos and Andersson.6 

80.
S. M.
Casey
and
D. G.
Leopold
,
J. Phys. Chem.
97
,
816
(
1993
).
81.
M.
Walter
and
H.
Häkkinen
,
New J. Phys.
10
,
043018
(
2008
).
82.
Q.
Wang
,
Q.
Sun
,
B. K.
Rao
,
P.
Jena
, and
Y.
Kawazoe
,
J. Chem. Phys.
119
,
7124
(
2003
).
83.
C.
Kohl
and
G. F.
Bertsch
,
Phys. Rev. B
60
,
4205
(
1999
).
84.
R.
Kondo
,
R.
Sekine
,
J.
Onoe
, and
H.
Nakamatsu
,
J. Surf. Sci. Soc. Jpn.
21
,
462
(
2000
).
85.
G.
Scalmani
and
M. J.
Frisch
,
J. Chem. Theory Comput.
8
,
2193
(
2012
).
86.

We used two starting geometries based on the BEE ground state (Table VI) with one slighly displaced atom to break the symmetry artificially.

87.
W. A.
de Heer
,
Rev. Mod. Phys.
65
,
611
(
1993
).
88.

bwGRiD (http://www.bw-grid.de), member of the German D-Grid initiative, funded by the Ministry for Education and Research and the Ministry for Science, Research and Arts Baden-Wuerttemberg.

89.
J.
Wang
,
A. D.
Becke
, and
V. H.
Smith
, Jr.
,
J. Chem. Phys.
102
,
3477
3480
(
1995
).
90.
K.
Andersson
,
B. O.
Roos
,
P.-Å.
Malmqvist
, and
P.-O.
Widmark
,
Chem. Phys. Lett.
230
,
391
397
(
1994
).
You do not currently have access to this content.