The circular and linear magnetic birefringences corresponding to the Faraday and the Cotton-Mouton effects, respectively, have been measured in xenon at λ = 1064 nm. The experimental setup is based on time dependent magnetic fields and a high finesse Fabry-Pérot cavity. Our value of the Faraday effect is the first measurement at this wavelength. It is compared to theoretical predictions. Our uncertainty of a few percent yields an agreement at better than 1σ with the computational estimate when relativistic effects are taken into account. Concerning the Cotton-Mouton effect, our measurement, the second ever published at λ = 1064 nm, agrees at better than 1σ with theoretical predictions. We also compare our error budget with that established for other experimental published values.

1.
L. D.
Barron
,
Molecular Light Scattering and Optical Activity
(
Cambridge University Press
,
Cambridge
,
2004
).
2.
A.
Rizzo
and
S.
Coriani
, “
Birefringences: A challenge for both theory and experiment
,”
Adv. Quantum Chem.
50
,
143
184
(
2005
).
3.
C.
Rizzo
,
A.
Rizzo
, and
D. M.
Bishop
, “
The Cotton-Mouton effect in gases: Experiment and theory
,”
Int. Rev. Phys. Chem.
16
,
81
111
(
1997
).
4.
T.
Helgaker
,
S.
Coriani
,
P.
Jørgensen
,
K.
Kristensen
,
J.
Olsen
, and
K.
Ruud
, “
Recent advances in wave function-based methods of molecular-property calculations
,”
Chem. Rev.
112
,
543
631
(
2012
).
5.
O.
Christiansen
,
C.
Hättig
, and
P.
Jørgensen
, “
Response functions from Fourier component variational perturbation theory applied to a time-averaged quasienergy
,”
Int. J. Quantum Chem.
68
,
1
52
(
1998
).
6.
U.
Ekström
,
P.
Norman
, and
A.
Rizzo
, “
Four-component Hartree–Fock calculations of magnetic-field induced circular birefringence—Faraday effect—in noble gases and dihalogens
,”
J. Chem. Phys.
122
,
074321
(
2005
).
7.
G. D.
Purvis
and
R. J.
Bartlett
, “
A full coupled cluster singles and doubles model: The inclusion of disconnected triples
,”
J. Chem. Phys.
76
,
1910
(
1982
).
8.
H.
Koch
,
A. S.
de Meras
,
T.
Helgaker
, and
O.
Christiansen
, “
The integral-direct coupled cluster singles and doubles model
,”
J. Chem. Phys.
104
,
4157
(
1996
).
9.
C.
Hättig
,
O.
Christiansen
,
H.
Koch
, and
P.
Jørgensen
, “
Frequency-dependent first hyperpolarizabilities using coupled cluster quadratic response theory
,”
Chem. Phys. Lett.
269
,
428
(
1997
).
10.
H.
Koch
,
O.
Christiansen
,
P.
Jørgensen
,
A. Sanchez
de Merás
, and
T.
Helgaker
, “
The CC3 model: An iterative coupled cluster approach including connected triples
,”
J. Chem. Phys.
106
,
1808
(
1997
).
11.
O.
Christiansen
,
H.
Koch
, and
P.
Jørgensen
, “
Response functions in the CC3 iterative triple excitation model
,”
J. Chem. Phys.
103
,
7429
(
1995
).
12.
J.
Gauss
,
O.
Christiansen
, and
J. F.
Stanton
, “
Triple excitation effects in coupled-cluster calculations of frequency-dependent hyperpolarizabilities
,”
Chem. Phys. Lett.
296
,
117
(
1998
).
13.
F.
Pawlowski
, “
Development and implementation of CC3 response theory for calculation of frequency-dependent molecular properties. Benchmarking of static molecular properties
,” Ph.D. thesis (
Aarhus University
,
2004
).
14.
R.
Battesti
,
B.
Pinto Da Souza
,
S.
Batut
,
C.
Robilliard
,
G.
Bailly
,
C.
Michel
,
M.
Nardone
,
L.
Pinard
,
O.
Portugall
,
G.
Trénec
,
J.-M.
Mackowski
,
G. L.
Rikken
,
J.
Vigué
, and
C.
Rizzo
, “
The BMV experiment: A novel apparatus to study the propagation of light in a transverse magnetic field
,”
Eur. Phys. J. D
46
,
323
333
(
2008
).
15.
A.
Cadène
,
D.
Sordes
,
P.
Berceau
,
M.
Fouché
,
R.
Battesti
, and
C.
Rizzo
, “
Faraday and Cotton-Mouton effects of helium at λ = 1064 nm
,”
Phys. Rev. A
88
,
043815
(
2013
).
16.
A.
Cadène
,
P.
Berceau
,
M.
Fouché
,
R.
Battesti
, and
C.
Rizzo
, “
Vacuum magnetic linear birefringence using pulsed fields: Status of the BMV experiment
,”
Eur. Phys. J. D
68
,
16
(
2014
).
17.
P.
Berceau
,
M.
Fouché
,
R.
Battesti
, and
C.
Rizzo
, “
Magnetic linear birefringence measurements using pulsed fields
,”
Phys. Rev. A
85
,
013837
(
2012
).
18.
R. V.
Pound
, “
Electronic frequency stabilization of microwave oscillators
,”
Rev. Sci. Instrum.
17
,
490
505
(
1946
).
19.
P.
Berceau
,
M.
Fouché
,
R.
Battesti
,
F.
Bielsa
,
J.
Mauchain
, and
C.
Rizzo
, “
Dynamical behaviour of birefringent Fabry-Pérot cavities
,”
Appl. Phys. B: Lasers Opt.
100
,
803
809
(
2010
).
20.
S.
Batut
,
J.
Mauchain
,
R.
Battesti
,
C.
Robilliard
,
M.
Fouché
, and
O.
Portugall
, “
A transportable pulsed magnet system for fundamental investigations in quantum electrodynamics and particle physics
,”
IEEE Trans. Appl. Supercond.
18
,
600
603
(
2008
).
21.
S.
Coriani
,
C.
Hättig
,
P.
Jørgensen
,
A.
Halkier
, and
A.
Rizzo
, “
Coupled cluster calculations of Verdet constants
,”
Chem. Phys. Lett.
281
,
445
451
(
1997
).
22.
S.
Coriani
,
C.
Hättig
,
P.
Jørgensen
,
A.
Halkier
, and
A.
Rizzo
, “
Erratum: “Coupled cluster calculations of Verdet constants” [Chem. Phys. Lett. 281, 445 (1997)]
,”
Chem. Phys. Lett.
293
,
324
(
1998
).
23.
S.
Coriani
,
P.
Jørgensen
,
O.
Christiansen
, and
J.
Gauss
, “
Triple excitation effects in coupled cluster calculations of Verdet constants
,”
Chem. Phys. Lett.
330
,
463
470
(
2000
).
24.
S.
Coriani
,
C.
Hättig
, and
A.
Rizzo
, “
The electric-field-gradient-induced birefringence of Helium, Neon, Argon, and SF6
,”
J. Chem. Phys.
111
,
7828
7836
(
1999
).
25.
C.
Hättig
,
O.
Christiansen
, and
P.
Jørgensen
, “
Cauchy moments and dispersion coefficients using coupled cluster linear response theory
,”
J. Chem. Phys.
107
,
10592
(
1997
).
26.
C.
Hättig
and
P.
Jørgensen
, “
Dispersion coefficients for first hyperpolarizabilities using coupled cluster quadratic response theory
,”
Theor. Chem. Acc.
100
,
230
(
1998
).
27.
M.
Dolg
, “
Effective core potentials
,”
in Modern Methods and Algorithms of Quantum Chemistry
,
NIC Series
Vol.
1
, edited by
J.
Grotendorst
(
John von Neumann Institute for Computing
,
Jülich
,
2000
), pp.
479
508
.
28.
K.
Peterson
,
D.
Figgen
,
E.
Goll
,
H.
Stoll
, and
M.
Dolg
, “
Systematically convergent basis sets with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistent basis sets for the post-d group 16-18 elements
,”
J. Chem. Phys.
119
,
11113
(
2003
).
29.
T.
Saue
, “
Spin-interactions and the non-relativistic limit of electrodynamics
,”
Adv. Quantum Chem.
48
,
383
405
(
2005
).
30.
T.
Saue
, “
Relativistic Hamiltonians for chemistry: A primer
,”
ChemPhysChem
12
,
3077
3094
(
2011
).
31.
K.
Aidas
,
C.
Angeli
,
K. L.
Bak
,
V.
Bakken
,
R.
Bast
,
L.
Boman
,
O.
Christiansen
,
R.
Cimiraglia
,
S.
Coriani
,
P.
Dahle
,
E. K.
Dalskov
,
U.
Ekström
,
T.
Enevoldsen
,
J. J.
Eriksen
,
P.
Ettenhuber
,
B.
Fernández
,
L.
Ferrighi
,
H.
Fliegl
,
L.
Frediani
,
K.
Hald
,
A.
Halkier
,
C.
Hättig
,
H.
Heiberg
,
T.
Helgaker
,
A. C.
Hennum
,
H.
Hettema
,
E.
Hjertenæs
,
S.
Høst
,
I.-M.
Høyvik
,
M. F.
Iozzi
,
B.
Jansik
,
H. J. A.
Jensen
,
D.
Jonsson
,
P.
Jørgensen
,
J.
Kauczor
,
S.
Kirpekar
,
T.
Kjærgaard
,
W.
Klopper
,
S.
Knecht
,
R.
Kobayashi
,
H.
Koch
,
J.
Kongsted
,
A.
Krapp
,
K.
Kristensen
,
A.
Ligabue
,
O. B.
Lutnæs
,
J. I.
Melo
,
K. V.
Mikkelsen
,
R. H.
Myhre
,
C.
Neiss
,
C. B.
Nielsen
,
P.
Norman
,
J.
Olsen
,
J. M. H.
Olsen
,
A.
Osted
,
M. J.
Packer
,
F.
Pawlowski
,
T. B.
Pedersen
,
P. F.
Provasi
,
S.
Reine
,
Z.
Rinkevicius
,
T. A.
Ruden
,
K.
Ruud
,
V.
Rybkin
,
P.
Salek
,
C. C. M.
Samson
,
A. S.
de Merás
,
T.
Saue
,
S. P. A.
Sauer
,
B.
Schimmelpfennig
,
K.
Sneskov
,
A. H.
Steindal
,
K. O.
Sylvester-Hvid
,
P. R.
Taylor
,
A. M.
Teale
,
E. I.
Tellgren
,
D. P.
Tew
,
A. J.
Thorvaldsen
,
L.
Thøgersen
,
O.
Vahtras
,
M. A.
Watson
,
D. J. D.
Wilson
,
M.
Ziolkowski
, and
H.
Ågren
, “
The Dalton quantum chemistry program system
,”
WIREs: Comput. Mol. Sci.
4
,
269
284
(
2014
).
32.
L. R.
Ingersoll
and
D. H.
Liebenberg
, “
Faraday effect in gases and vapors II
,”
J. Opt. Soc. Am.
46
,
538
542
(
1956
).
33.
L.
Rosenfeld
, “
Zur Theorie des Faradayeffekts
,”
Z. Phys.
57
,
835
(
1929
).
34.
S.
Ikäläinen
,
P.
Lantto
, and
J.
Vaara
, “
Fully relativistic calculations of Faraday and nuclear spin-induced optical rotation in xenon
,”
J. Chem. Theory Comput.
8
,
91
(
2012
).
35.
I. M.
Savukov
, “
Particle-hole configuration-interaction polarizabilities and Verdet constants of noble-gas atoms
,”
Phys. Rev. A
85
,
052512
(
2012
).
36.
S.
Carusotto
,
E.
Iacopini
,
E.
Polacco
,
F.
Scuri
,
G.
Stefanini
, and
E.
Zavattini
, “
Measurement of the magnetic birefringence of noble gases
,”
J. Opt. Soc. Am. B
1
,
635
640
(
1984
).
37.
D. M.
Bishop
and
J.
Pipin
, “
Hypermagnetizability anisotropy (Cotton-Mouton effect) for the rare gases and methane
,”
Chem. Phys. Lett.
186
,
195
197
(
1991
).
38.
M.
Bregant
,
G.
Cantatore
,
S.
Carusotto
,
R.
Cimino
,
F.
Della Valle
,
G.
Di Domenico
,
U.
Gastaldi
,
M.
Karuza
,
E.
Milotti
,
E.
Polacco
,
G.
Ruoso
,
E.
Zavattini
, and
G.
Zavattini
, “
Measurement of the Cotton-Mouton effect in krypton and xenon at 1064 nm with the PVLAS apparatus
,”
Chem. Phys. Lett.
392
,
276
280
(
2004
).
39.
M.
Bregant
,
G.
Cantatore
,
S.
Carusotto
,
R.
Cimino
,
F.
Della Valle
,
G.
Di Domenico
,
U.
Gastaldi
,
M.
Karuza
,
V.
Lozza
,
E.
Milotti
,
E.
Polacco
,
G.
Raiteri
,
G.
Ruoso
,
E.
Zavattini
, and
G.
Zavattini
, “
Erratum: ‘Measurement of the Cotton-Mouton effect in krypton and xenon at 1064 nm with the PVLAS apparatus’ [Chem. Phys. Lett. 392, 276 (2004)] and ‘A precise measurement of the Cotton-Mouton effect in neon’ [Chem. Phys. Lett. 410, 288 (2005)]
,”
Chem. Phys. Lett.
477
,
415
(
2009
).
40.
D. M.
Bishop
and
S. M.
Cybulski
, “
Calculation of electromagnetic properties of the noble gases
,”
Chem. Phys. Lett.
211
,
255
258
(
1993
).
You do not currently have access to this content.