Water in different phases under various external conditions is very important in bio-chemical systems and for material science at surfaces. Density functional theory methods and approximations thereof have to be tested system specifically to benchmark their accuracy regarding computed structures and interaction energies. In this study, we present and test a set of ten ice polymorphs in comparison to experimental data with mass densities ranging from 0.9 to 1.5 g/cm3 and including explicit corrections for zero-point vibrational and thermal effects. London dispersion inclusive density functionals at the generalized gradient approximation (GGA), meta-GGA, and hybrid level as well as alternative low-cost molecular orbital methods are considered. The widely used functional of Perdew, Burke and Ernzerhof (PBE) systematically overbinds and overall provides inconsistent results. All other tested methods yield reasonable to very good accuracy. BLYP-D3atm gives excellent results with mean absolute errors for the lattice energy below 1 kcal/mol (7% relative deviation). The corresponding optimized structures are very accurate with mean absolute relative deviations (MARDs) from the reference unit cell volume below 1%. The impact of Axilrod-Teller-Muto (atm) type three-body dispersion and of non-local Fock exchange is small but on average their inclusion improves the results. While the density functional tight-binding model DFTB3-D3 performs well for low density phases, it does not yield good high density structures. As low-cost alternative for structure related problems, we recommend the recently introduced minimal basis Hartree-Fock method HF-3c with a MARD of about 3%.

1.
R. G.
Parr
and
W.
Yang
,
Density-Functional Theory of Atoms and Molecules
(
Oxford University Press
,
Oxford
,
1989
);
W.
Koch
and
M. C.
Holthausen
,
A Chemist’s Guide to Density Functional Theory
(
Wiley-VCH
,
New York
,
2001
);
J.
Dreizler
and
E. K. U.
Gross
,
Density Functional Theory, An Approach to the Quantum Many-Body Problem
(
Springer
,
Berlin
,
1990
);
R.
Paverati
and
D. G.
Truhlar
,
Philos. Trans. R. Soc. A
372
,
20120476
(
2014
);
A.
Ruzsinszky
and
J. P.
Perdew
,
Comput. Theor. Chem.
963
,
2
(
2011
).
2.
S.
Kristyán
and
P.
Pulay
,
Chem. Phys. Lett.
229
,
175
(
1994
);
J. M.
Pérez-Jordá
and
A. D.
Becke
,
Chem. Phys. Lett.
233
,
134
(
1995
);
P.
Hobza
,
J.
Sponer
, and
T.
Reschel
,
J. Comput. Chem.
16
,
1315
(
1995
);
M.
Allen
and
D. J.
Tozer
,
J. Chem. Phys.
117
,
11113
(
2002
).
3.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
,
J. Chem. Phys.
132
,
154104
(
2010
).
4.
A.
Tkatchenko
and
M.
Scheffler
,
Phys. Rev. Lett.
102
,
073005
(
2009
);
[PubMed]
A.
Tkatchenko
,
R. A.
DiStasio
,
R.
Car
, and
M.
Scheffler
,
Phys. Rev. Lett.
108
,
236402
(
2012
).
[PubMed]
5.
A. D.
Becke
and
E. R.
Johnson
,
J. Chem. Phys.
123
,
154101
(
2005
);
[PubMed]
O. A.
Vydrov
and
T.
Van Voorhis
,
J. Chem. Phys.
133
,
244103
(
2010
).
[PubMed]
6.
K. E.
Riley
,
M.
Pitoňák
,
P.
Jurečka
, and
P.
Hobza
,
Chem. Rev.
110
,
5023
(
2010
);
[PubMed]
S.
Grimme
,
WIREs Comput. Mol. Sci.
1
,
211
(
2011
).
7.
J. G.
Brandenburg
,
M.
Hochheim
,
T.
Bredow
, and
S.
Grimme
,
J. Phys. Chem. Lett.
5
,
4275
(
2014
).
8.
T.
Bartels-Rausch
,
V.
Bergeron
,
J. H. E.
Cartwright
,
R.
Escribano
,
J. L.
Finney
,
H.
Grothe
,
P. J.
Gutirrez
,
J.
Haapala
,
W. F.
Kuhs
,
J. B. C.
Pettersson
,
S. D.
Price
,
C. I.
Sainz-Daz
,
D. J.
Stokes
,
G.
Strazzulla
,
E. S.
Thomson
,
H.
Trinks
, and
N.
Uras-Aytemiz
,
Rev. Mod. Phys.
84
,
885
(
2012
).
9.
D. A.
Palmer
,
R.
Fernández-Prini
, and
A. H.
Harvey
,
Aqueous Systems at Elevated Temperatures and Pressure
(
Academic Press
,
London
,
2004
).
10.
M. D.
Ben
,
J.
Hutter
, and
J.
VandeVondele
,
J. Chem. Theory Comput.
9
,
2654
(
2013
);
[PubMed]
M. D.
Ben
,
M.
Schoenherr
,
J.
Hutter
, and
J.
VandeVondele
,
J. Phys. Chem. Lett.
4
,
3753
(
2013
).
11.
J.
Carrasco
,
A.
Hodgson
, and
A.
Michaelides
,
Nat. Mater.
11
,
667
(
2012
);
[PubMed]
S.
Chutia
,
M.
Rossi
, and
V.
Blum
,
J. Phys. Chem. B
116
,
14788
(
2012
);
[PubMed]
R. A.
DiStasio
,
B.
Santra
,
Z.
Li
,
X.
Wu
, and
R.
Car
,
J. Chem. Phys.
141
,
084502
(
2014
).
[PubMed]
12.
E. G.
Hohenstein
and
C. D.
Sherrill
,
WIREs Comput. Mol. Sci.
2
,
304
(
2012
).
13.
L.
Goerigk
and
S.
Grimme
,
J. Chem. Theory Comput.
7
,
291
(
2011
).
14.
S.
Grimme
and
M.
Steinmetz
,
Phys. Chem. Chem. Phys.
15
,
16031
(
2013
).
15.
A. O.
de-la Roza
and
E. R.
Johnson
,
J. Chem. Phys.
137
,
054103
(
2012
);
[PubMed]
A. M.
Reilly
and
A.
Tkatchenko
,
J. Chem. Phys.
139
,
024705
(
2013
).
[PubMed]
16.
B.
Santra
,
J.
Klimeš
,
A.
Tkatchenko
,
D.
Alfè
,
B.
Slater
,
A.
Michaelides
,
R.
Car
, and
M.
Scheffler
,
J. Chem. Phys.
139
,
154702
(
2013
);
[PubMed]
O.
Kambara
,
K.
Takahashi
,
M.
Hayashi
, and
J.-L.
Kuo
,
Phys. Chem. Chem. Phys.
14
,
11484
(
2012
).
[PubMed]
17.
M.
Macher
,
J.
Klimeš
,
C.
Franchini
, and
G.
Kresse
,
J. Chem. Phys.
140
,
084502
(
2014
);
[PubMed]
M. J.
Gillan
,
D.
Alfè
,
P. J.
Bygrave
,
C. R.
Taylor
, and
F. R.
Manby
,
J. Chem. Phys.
139
,
114101
(
2013
).
[PubMed]
18.
T.
Takamuku
,
K.
Saisho
,
S.
Nozawa
, and
T.
Yamaguchi
,
J. Mol. Liq.
119
,
122
(
2005
).
19.
P. V.
Hobbs
,
Ice Physics
(
Oxford University Press
,
New York
,
1974
);
C.
Vega
,
C.
McBride
,
E.
Sanz
, and
J. L. F.
Abascal
,
Phys. Chem. Chem. Phys.
7
,
1450
(
2005
).
[PubMed]
20.
A. D.
Fortes
,
I. G.
Wood
,
M.
Alfredsson
,
L.
Vocadlo
, and
K. S.
Knight
,
J. Appl. Cryst.
38
,
612
(
2005
);
C.
Lobban
,
J. L.
Finney
, and
W. F.
Kuhs
,
J. Chem. Phys.
117
,
3928
(
2002
).
21.
E.
Whalley
,
J. Chem. Phys.
81
,
4087
(
1984
).
23.
Y.
Yoshimura
,
S. T.
Stewart
,
M.
Somayazulu
,
H.-k.
Mao
, and
R. J.
Hemley
,
J. Chem. Phys
124
,
024502
(
2006
);
[PubMed]
J. D.
Jorgensen
,
R. A.
Beyerlein
,
N.
Watanabe
, and
T. G.
Worlton
,
J. Chem. Phys.
81
,
3211
(
1984
).
24.
J. D.
Londono
,
W. F.
Kuhs
, and
J. L.
Finney
,
J. Chem. Phys.
98
,
4878
(
1993
);
S. J.
La Placa
,
W. C.
Hamilton
,
B.
Kamb
, and
A.
Prakash
,
J. Chem. Phys.
58
,
567
(
1973
).
25.
C. G.
Salzmann
,
P. G.
Radaelli
,
A.
Hallbrucker
,
E.
Mayer
, and
J. L.
Finney
,
Science
311
,
1758
(
2006
).
26.
C. G.
Salzmann
,
P. G.
Radaelli
,
E.
Mayer
, and
J. L.
Finney
,
Phys. Rev. Lett.
103
,
105701
(
2009
).
27.
G.
Kresse
and
J.
Furthmüller
,
J. Comput. Mat. Sci.
6
,
15
(
1996
);
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
28.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
);
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
29.
J. G.
Brandenburg
,
S.
Grimme
,
P. G.
Jones
,
G.
Markopoulos
,
H.
Hopf
,
M. K.
Cyranski
, and
D.
Kuck
,
Chem. - Eur. J.
32
,
6745
(
2013
).
30.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
);
[PubMed]
erratum,
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
78
,
1396
(
1997
).
31.
B.
Hammer
,
L. B.
Hansen
, and
J. K.
Norskov
,
Phys. Rev. B
59
,
7413
(
1999
).
32.
Y.
Zhang
and
W.
Yang
,
Phys. Rev. Lett.
80
,
890
(
1998
).
33.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
34.
J.
Tao
,
J. P.
Perdew
,
V. N.
Staroverov
, and
G. E.
Scuseria
,
Phys. Rev. Lett.
91
,
146401
(
2003
).
35.
Y.
Zhao
and
D. G.
Truhlar
,
J. Chem. Phys.
125
,
194101
(
2006
).
36.
C.
Adamo
and
V.
Barone
,
J. Chem. Phys.
110
,
6158
(
1999
).
37.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
);
P. J.
Stephens
,
F. J.
Devlin
,
C. F.
Chabalowski
, and
M. J.
Frisch
,
J. Phys. Chem.
98
,
11623
(
1994
).
38.
A. V.
Krukau
,
O. A.
Vydrov
,
A. F.
Izmaylov
, and
G. E.
Scuseria
,
J. Chem. Phys.
125
,
224106
(
2006
).
39.
S.
Grimme
,
S.
Ehrlich
, and
L.
Goerigk
,
J. Comput. Chem.
32
,
1456
(
2011
).
40.
B. M.
Axilrod
and
E.
Teller
,
J. Chem. Phys.
11
,
299
(
1943
);
Y.
Muto
,
Proc. Phys. Math. Soc. Jpn.
17
,
629
(
1944
).
41.
R.
Dovesi
,
R.
Orlando
,
A.
Erba
,
C. M.
Zicovich-Wilson
,
B.
Civalleri
,
S.
Casassa
,
L.
Maschio
,
M.
Ferrabone
,
M.
De La Pierre
,
P.
D’Arco
,
Y.
Noël
,
M.
Causà
,
M.
Rérat
, and
B.
Kirtman
,
Int. J. Quantum Chem.
114
,
1287
(
2014
).
42.
H.
Kruse
and
S.
Grimme
,
J. Chem. Phys.
136
,
154101
(
2012
);
[PubMed]
J. G.
Brandenburg
,
M.
Alessio
,
B.
Civalleri
,
M. F.
Peintinger
,
T.
Bredow
, and
S.
Grimme
,
J. Phys. Chem. A
117
,
9282
(
2013
).
[PubMed]
43.
R.
Sure
and
S.
Grimme
,
J. Comput. Chem.
34
,
1672
(
2013
);
[PubMed]
J. G.
Brandenburg
and
S.
Grimme
,
Top. Curr. Chem.
345
,
1
(
2014
).
[PubMed]
44.
M.
Elstner
,
D.
Porezag
,
G.
Jungnickel
,
J.
Elsner
,
M.
Haugk
,
T.
Frauenheim
,
S.
Suhai
, and
G.
Seifert
,
Phys. Rev. B
58
,
7260
(
1998
).
45.
J. G.
Brandenburg
and
S.
Grimme
,
J. Phys. Chem. Lett.
5
,
1785
(
2014
).
46.
B.
Aradi
,
B.
Hourahine
, and
T.
Frauenheim
,
J. Phys. Chem. A
111
,
5678
(
2007
);
[PubMed]
M.
Elstner
,
J. Phys. Chem. A
111
,
5614
(
2007
).
[PubMed]
47.
M.
Gaus
,
A.
Goez
, and
M.
Elstner
,
J. Chem. Theory Comput.
9
,
338
(
2013
).
48.
See supplementary material at http://dx.doi.org/10.1063/1.4916070 for explicit k-point grid utilized in all calculations, unit cell parameters and lattice energies of all tested method combinations, explicit error distributions, and optimized geometries at the PBE-D3/1000 eV level.
49.
J. G.
Brandenburg
and
S.
Grimme
,
Theor. Chem. Acc.
132
,
1399
(
2013
).
50.
B.
Santra
,
J. c. v.
Klimeš
,
D.
Alfè
,
A.
Tkatchenko
,
B.
Slater
,
A.
Michaelides
,
R.
Car
, and
M.
Scheffler
,
Phys. Rev. Lett.
107
,
185701
(
2011
).
51.
E. D.
Murray
and
G.
Galli
,
Phys. Rev. Lett.
108
,
105502
(
2012
).
52.
L.
Goerigk
,
H.
Kruse
, and
S.
Grimme
,
ChemPhysChem
12
,
3421
(
2011
).
53.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
80
,
891
(
1998
);
J.
Moellmann
and
S.
Grimme
,
J. Phys. Chem. C
118
,
7615
(
2014
).
54.
M.
Del Ben
,
M.
Schönherr
,
J.
Hutter
, and
J.
VandeVondele
,
J. Phys. Chem. Lett.
4
,
3753
(
2013
);
K.
Forster-Tonigold
and
A.
Gro
,
J. Chem. Phys.
141
,
064501
(
2014
).
[PubMed]
55.
H.
Kruse
,
L.
Goerigk
, and
S.
Grimme
,
J. Org. Chem.
77
,
10824
(
2012
).
56.
V. S.
Bryantsev
,
M. S.
Diallo
,
A. C. T.
van Duin
, and
W. A.
Goddard
,
J. Chem. Theory Comput.
5
,
1016
(
2009
).
57.
T.
Anacker
and
J.
Friedrich
,
J. Comput. Chem.
35
,
634
(
2014
).

Supplementary Material

You do not currently have access to this content.