Protein molecules often self-assemble by means of non-covalent physical bonds to form extended filaments, such as amyloids, F-actin, intermediate filaments, and many others. The kinetics of filament growth is limited by the disassembly rate, at which inter-protein bonds break due to the thermal motion. Existing models often assume that the thermal dissociation of subunits occurs uniformly along the filament, or even preferentially in the middle, while the well-known propensity of F-actin to depolymerize from one end is mediated by biochemical factors. Here, we show for a very general (and generic) model, using Brownian dynamics simulations and theory, that the breakup location along the filament is strongly controlled by the asymmetry of the binding force about the minimum, as well as by the bending stiffness of the filament. We provide the basic connection between the features of the interaction potential between subunits and the breakup topology. With central-force (that is, fully flexible) bonds, the breakup rate is always maximum in the middle of the chain, whereas for semiflexible or stiff filaments this rate is either a minimum in the middle or flat. The emerging framework provides a unifying understanding of biopolymer fragmentation and depolymerization and recovers earlier results in its different limits.

1.
F.
Oosawa
and
F. S.
Asakura
,
Thermodynamics of the Polymerization of Protein
(
Academic Press
,
1975
).
2.
T. D.
Pollard
,
Annu. Rev. Biochem.
55
,
987
-
1035
(
1986
).
3.
F.
Chiti
and
C. M.
Dobson
,
Annu. Rev. Biochem.
75
,
333
(
2006
).
5.
A.
Irbäck
,
S. A.
Jónsson
,
N.
Linnemann
,
B.
Linse
, and
S.
Wallin
,
Phys. Rev. Lett.
110
,
058101
(
2013
).
6.
P. S.
Niranjan
,
P. B.
Yim
,
J. G.
Forbes
,
S. C.
Greer
,
J.
Dudowicz
,
K. F.
Freed
, and
J. F.
Douglas
,
J. Chem. Phys.
119
,
4070
-
4084
(
2003
).
7.
J.
Adamcik
,
J.-M.
Jung
,
J.
Flakowski
,
P.
De Los Rios
,
G.
Dietler
, and
R.
Mezzenga
,
Nat. Nanotechnol.
5
,
423
-
428
(
2010
).
8.
M.
Tanaka
,
S. R.
Collins
,
B. H.
Toyama
, and
J. S.
Weissman
,
Nature
442
,
585
(
2006
).
9.
A.
Zaccone
,
D.
Gentili
,
H.
Wu
, and
M.
Morbidelli
,
J. Chem. Phys.
132
,
134903
(
2010
).
10.
H.
Wu
,
A.
Tsoutsoura
 et al,
Langmuir
26
,
2761
(
2010
).
11.
T. P. J.
Knowles
,
C. A.
Waudby
,
G. L.
Devlin
,
S. I. A.
Cohen
,
A.
Aguzzi
,
M.
Vendruscolo
,
E. M.
Terentjev
,
M. E.
Welland
, and
C. M.
Dobson
,
Science
326
,
1533
-
1537
(
2009
).
12.
V.
Fodera
,
A.
Zaccone
,
M.
Lattuada
, and
A. M.
Donald
,
Phys. Rev. Lett.
111
,
108105
(
2013
).
13.
L.
Di Michele
,
E.
Eiser
, and
V.
Fodera
,
J. Phys. Chem. Lett.
4
,
3158
(
2012
).
14.
Colloidal Magnetic Fluids. Basics, Development and Applications of Ferrofluids
, edited by
S.
Odenbach
(
Springer
,
Berlin
,
2009
).
15.
B.
Bonn
,
H.
Kellay
,
M.
Prochnow
,
K.
Ben-Djiemiaa
, and
J.
Meunier
,
Science
280
,
265
-
267
(
1998
).
16.
L.
DiMichele
,
B. M.
Mognetti
,
T.
Yanagishima
,
P.
Varilly
,
Z.
Ruff
,
D.
Frenkel
, and
E.
Eiser
,
J. Am. Chem. Soc.
136
,
6538
(
2014
).
17.
M.
Peyrard
and
A. R.
Bishop
,
Phys. Rev. Lett.
62
,
2755
-
2758
(
1989
).
18.
C. B.
Mast
,
S.
Schink
,
U.
Gerland
, and
D.
Braun
,
Proc. Natl. Acad. Sci. U. S. A.
110
,
8030
-
8035
(
2013
).
19.
21.
E.
Fermi
,
J. R.
Pasta
, and
S.
Ulam
,
Los Alamos Scientific Laboratory Report No. LA-1940
, May
1955
.
22.
N. J.
Zabusky
and
M. D.
Kruskal
,
Phys. Rev. Lett.
15
,
240
-
243
(
1965
).
23.
F. A.
Oliveira
and
P. L.
Taylor
,
J. Chem. Phys.
101
,
10118
(
1994
).
24.
A.
Ghosh
,
D. I.
Dimitrov
,
V. G.
Rostiashvili
,
A.
Milchev
, and
T. A.
Vilgis
,
J. Chem. Phys.
132
,
204902
(
2010
).
25.
A.
Zaccone
and
E. M.
Terentjev
,
Phys. Rev. Lett.
108
,
038302
(
2012
).
26.
P.
Haenggi
,
P.
Talkner
, and
M.
Borkovec
,
Rev. Mod. Phys.
62
,
251
-
341
(
1990
).
27.
F. A. L.
Mauguiere
,
P.
Collins
,
G. S.
Ezra
, and
S.
Wiggins
,
J. Chem. Phys.
138
,
134118
(
2013
).
28.
J.
Paturej
,
A.
Milchev
,
V. G.
Rostiashvili
, and
T. A.
Vilgis
,
J. Chem. Phys.
134
,
224901
(
2011
).
29.
S. J.
Plimpton
,
J. Comput. Phys.
117
,
1
(
1995
).
30.
D. L.
Ermak
,
J. Chem. Phys.
62
,
4189
(
1975
).
31.
D. L.
Ermak
and
J. A.
McCammon
,
J. Chem. Phys.
69
,
1352
(
1978
).
32.
D.
Burne
and
S.
Kim
,
Proc. Natl. Acad. Sci. U. S. A.
90
,
3835
(
1993
).
33.
T.
Yanagida
,
M.
Nakase
,
K.
Nishiyama
, and
F.
Oosawa
,
Nature
307
,
58
-
60
(
1984
).
34.
F.
Gittes
,
B.
Mickey
,
J.
Nettleton
, and
J.
Howard
,
J. Cell Biol.
120
,
923
-
934
(
1993
).
35.
T. P. J.
Knowles
,
J. F.
Smith
,
A.
Craig
,
C. M.
Dobson
, and
M. E.
Welland
,
Phys. Rev. Lett.
96
,
238301
(
2006
).
36.
J.
Riseman
and
J. G.
Kirkwood
,
J. Chem. Phys.
18
,
512
(
1950
).
37.
F. F.
Abraham
and
J.
Canosa
,
J. Chem. Phys.
50
,
1303
(
1969
).
38.
J.
Lothe
and
G. M.
Pound
,
Phys. Rev.
182
,
339
(
1969
).
39.
J.
Frenkel
,
Kinetic Theory of Liquids
(
Dover
,
New York
,
1946
).
40.
M.
Doi
and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Oxford University Press
,
1986
).
41.
N. G.
van Kampen
,
Stochastic Processes in Physics and Chemistry
(
Elsevier
,
Amsterdam
,
1997
).
42.
W.
Ebeling
and
I. M.
Sokolov
,
Statistical Thermodynamics and Stochastic Theory of Nonequilibrium Systems
(
World Scientific
,
Singapore
,
2005
).
43.
D.
Pines
and
P.
Nozieres
,
The Theory of Quantum Liquids
(
W.A. Benjamin
,
Reading Massachusetts
,
1966
), Vol.
1
.
44.
A.
Dehsorkhi
,
V.
Castelletto
,
I. W.
Hamley
,
J.
Adamcik
, and
R.
Mezzenga
,
Soft Matter
9
,
6033
-
6036
(
2013
).
45.
T. P. J.
Knowles
,
A.
De Simone
,
A. W.
Fitzpatrick
,
A.
Baldwin
,
S.
Meehan
,
L.
Rajah
,
M.
Vendruscolo
,
M. E.
Welland
,
C. M.
Dobson
, and
E. M.
Terentjev
,
Phys. Rev. Lett.
109
,
158101
(
2012
).
46.
S.
Assenza
,
J.
Adamcik
,
R.
Mezzenga
, and
P.
De Los Rios
,
Phys. Rev. Lett.
113
,
268103
(
2014
).
You do not currently have access to this content.