This work reports non-radiative internal conversion (IC) rate constants obtained for Cun with n = 3, 6, and 9 and H2 on Cu3. The Time-Dependent Density Functional Theory (TDDFT) method was employed with three different functionals in order to investigate the electronic structures and the absorption spectra. The performance of the generalized gradient approximation of Perdew, Burke and Ernzerhof (PBE) and the hybrid B3LYP and PBE0 exchange correlation functionals in combination with the SVP and the def2-TZVP basis sets was examined. TDDFT results were used as input data to compute internal conversion rate constants. For this purpose, we have developed a program package. A description of the theoretical background used in our numerical implementation and the program input file is presented. In view of future applications of this program package in photoinduced catalysis, we present the analysis of the IC rate processes for the photodissociation of H2 on Cu3. These results showed the applicability of the method and the computational program to identify the vibrational modes in transition metal clusters giving rise to the largest IC rate constant due to their interactions with the excited electronic states occurring in the hot-electron induced dissociation phenomena.

1.
W.
Jahn
,
J. Struct. Biol.
127
,
106
(
1999
).
2.
K. S.
Amankwah
and
U.
De Boni
,
Exp. Cell Res.
210
,
315
(
1994
).
3.
H.
He
,
C.
Xie
, and
J.
Ren
,
Anal. Chem.
80
,
5951
(
2008
).
4.
G. J.
Hutchings
and
R. A.
Joffe
,
Appl. Catal.
20
,
215
(
1986
).
5.
Y.
Zhu
,
H.
Qian
,
B. A.
Drake
, and
R.
Jin
,
Angew. Chem., Int. Ed.
49
,
1295
(
2010
).
6.
M.
Haruta
,
N.
Yamada
,
T.
Kobayashi
, and
S.
lijima
,
J. Catal.
115
,
301
(
1989
).
7.
U.
Heiz
and
W.-D.
Schneider
,
J. Phys. D: Appl. Phys.
33
,
R85
(
2000
).
8.
N.
Lopez
and
J. K.
Nørskov
,
J. Am. Chem. Soc.
124
,
11262
(
2002
).
9.
A. A.
Herzing
,
C. J.
Kiely
,
A. F.
Carley
,
P.
Landon
, and
G. J.
Hutchings
,
Science
321
,
1331
(
2008
).
10.
C.
Guarise
,
F.
Manea
,
G.
Zaupa
,
L.
Pasquato
,
L. J.
Prins
, and
P.
Scrimin
,
J. Pept. Sci.
14
,
174
(
2008
).
11.
M. F.
Jarrold
and
K. M.
Creegan
,
Chem. Phys. Lett.
166
,
116
(
1990
).
12.
J.-Y.
Bigot
,
J.-C.
Merle
,
O.
Cregut
, and
A.
Daunois
,
Phys. Rev. Lett.
75
,
4702
-
4705
(
1995
).
13.
B. A.
Smith
,
J. Z.
Zhang
,
U.
Giebel
, and
G.
Schmid
,
Chem. Phys. Lett.
270
,
139
-
144
(
1997
).
14.
Y.
Takeda
,
J. P.
Zhao
,
C. G.
Lee
,
V. T.
Gritsyna
, and
N.
Kishimoto
,
Nucl. Instrum. Methods Phys. Res., Sect. B
166-167
,
877
-
881
(
2000
).
15.
J. H.
Hodak
,
A.
Henglein
, and
G. V.
Hartland
,
J. Phys. Chem. B
104
,
9954
(
2000
).
16.
S.
Link
,
M. A.
El-Sayed
,
T. G.
Schaaff
, and
R. L.
Whetten
,
Chem. Phys. Lett.
356
,
240
-
246
(
2002
).
17.
C.
Voisin
,
D.
Christofilos
,
P. A.
Loukakos
,
N.
Del Fatti
, and
F.
Vallee
,
Phys. Rev. B
69
,
195416
(
2004
).
18.
C. D.
Grant
,
A. M.
Schwartzberg
,
Y.
Yang
,
S.
Chen
, and
J. Z.
Zhang
,
Chem. Phys. Lett.
383
,
31
-
34
(
2004
).
19.
L. D.
Petanza
,
G.
Colonna
,
S.
Longo
, and
M.
Capitelli
,
Eur. Phys. J. D
45
,
369
-
389
(
2007
).
20.
D. B.
Pedersen
and
S.
Wang
,
J. Phys. Chem. C
111
,
17493
-
17499
(
2007
).
21.
M.
Hu
,
J. Y.
Chen
,
Z. Y.
Li
,
L.
Au
,
G. V.
Hartland
,
X. D.
Li
,
M.
Marquez
, and
Y. N.
Xia
,
Chem. Soc. Rev.
35
,
1084
(
2006
).
22.
G. V.
Hartland
,
Chem. Rev.
111
,
3858
-
3887
(
2011
).
23.
S.
Lecoultre
,
A.
Rydlo
,
C.
Félix
,
J.
Buttet
,
S.
Gilb
, and
W.
Harbich
,
J. Chem. Phys.
134
,
074303
(
2011
).
24.
M.
Zaarour
,
B.
Dong
,
I.
Naydenova
,
R.
Retoux
, and
S.
Mintova
,
Microporous Mesoporous Mater.
189
,
11
-
21
(
2014
).
25.
C. F.
Bohren
and
D. R.
Huffman
,
Absorption and Scattering of Light by Small Particles
(
Wiley
,
New York
,
1983
).
26.
E. J.
Zeman
and
G. C.
Schatz
,
J. Phys. Chem.
91
,
634
(
1987
).
27.
M.
Vollmer
and
U.
Kreibig
,
Optical Properties of Metal Clusters
(
Springer
,
New York
,
1994
).
28.
G.
Celep
,
E.
Cottancin
,
J.
Lermé
,
M.
Pellarin
,
L.
Arnaud
,
J. R.
Huntzinger
,
J. L.
Vialle
,
M.
Broyer
,
B.
Palpant
,
O.
Boisron
, and
P.
Mélinon
,
Phys. Rev. B
70
,
165409
(
2004
).
29.
G. A.
Ozin
,
S. A.
Douglas
,
F.
McIntosh
,
S. M.
Mattar
, and
J.
Garcla-Prieto
,
J. Phys. Chem.
87
,
4651
-
4665
(
1983
).
30.
G.
Mie
,
Ann. Phys. (Weinheim, Ger.)
330
,
377
(
1908
).
31.
S.
Link
and
M. A.
El-Sayed
,
Int. Rev. Phys. Chem.
19
,
409
(
2000
).
32.
A.
Baiardi
,
J.
Bloino
, and
V.
Barone
,
J. Chem. Theory Comput.
9
,
4097
-
4115
(
2013
).
33.
H.-C.
Jankowiak
,
J. L.
Stuber
, and
R.
Berger
,
J. Chem. Phys.
127
,
234101
(
2007
).
34.
V.
Barone
,
J.
Bloino
,
M.
Biczysko
, and
F.
Santoro
,
J. Chem. Theory Comput.
5
,
540
-
554
(
2009
).
35.
T.
Petrenko
and
F.
Neese
,
J. Chem. Phys.
127
,
164319
(
2007
).
36.
T.
Petrenko
and
F.
Neese
,
J. Chem. Phys.
137
,
234107
(
2012
).
37.
D. W.
Silverstein
and
L.
Jensen
,
J. Chem. Phys.
136
,
064110
(
2012
).
38.
R.
Ianconescu
and
E.
Pollak
,
J. Phys. Chem. A
108
,
7778
-
7784
(
2004
).
39.
J.
Tatchen
and
E.
Pollak
,
J. Chem. Phys.
128
,
164303
(
2008
).
40.
J.
Tang
,
M. T.
Lee
, and
S. H.
Lin
,
J. Chem. Phys.
119
,
7188
-
7196
(
2003
).
41.
Y.
Niu
,
Q.
Peng
, and
Z.
Shuai
,
Sci. China, Ser. B: Chem.
51
,
1153
(
2008
).
42.
Y.
Niu
,
Q.
Peng
,
C.
Deng
,
X.
Gao
, and
Z.
Shuai
,
J. Phys. Chem. A
114
,
7817
-
7831
(
2010
).
43.
Q.
Wu
,
Q.
Peng
,
Y.
Niu
,
X.
Gao
, and
Z.
Shuai
,
J. Phys. Chem. A
116
,
3881
(
2012
).
44.
Q.
Peng
,
Y.
Niu
,
C.
Deng
, and
Z.
Shuai
,
Chem. Phys.
370
,
215
-
222
(
2010
).
45.
J.
Franck
,
Trans. Faraday Soc.
21
,
536
-
542
(
1926
).
46.
J.
Franck
,
F.
Weigert
,
H. v.
Halban
,
M.
Bodenstein
,
E. C. C.
Baly
,
B.
Lewis
,
D. L.
Chapman
,
H. S.
Taylor
,
A. J.
Allmand
,
J. A.
Christiansen
,
E. J.
Bowen
,
W. A.
Noyes
,
O.
Stern
,
R. G. W.
Norrish
,
B.
Flurscheim
, and
A. L.
Marshall
,
Trans. Faraday Soc.
21
,
581
-
590
(
1926
).
47.
E. U.
Condon
,
Phys. Rev.
28
,
1182
-
1201
(
1926
).
48.
E. U.
Condon
,
Phys. Rev.
32
,
858
-
872
(
1928
).
49.
G.
Herzberg
and
E.
Teller
,
Z. Phys. Chem., Abt. B
21
,
410
-
446
(
1933
).
50.
F.
Duschinsky
,
Acta Physicochim. URSS
7
,
551
(
1937
).
51.
K.
Shizu
,
T.
Sato
, and
K.
Tanaka
,
Nanoscale
2
,
2186
(
2010
).
52.
Y.
He
and
E.
Pollak
,
J. Chem. Phys. A
105
,
10961
-
10966
(
2001
).
53.
E.
Pollak
and
L. J.
Liao
,
J. Chem. Phys.
108
,
2733
-
2743
(
1998
).
54.
J.
Shao
,
L. J.
Liao
, and
E.
Pollak
,
J. Chem. Phys.
108
,
9711
-
9725
(
1998
).
55.
J.
Tang
and
S. H.
Lin
,
Phys. Rev. E
73
,
061108
-
061110
(
2006
).
56.
R.
Send
and
F.
Furche
,
J. Chem. Phys.
132
,
044107
(
2010
).
57.
TURBOMOLE V6.4, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007, available from http://www.turbomole.com.
58.
A.
Schafer
,
H.
Horn
, and
R.
Ahlrichs
,
J. Chem. Phys.
97
,
2571
(
1992
).
59.
F.
Weigend
and
R.
Ahlrichs
,
Phys. Chem. Chem. Phys.
7
,
3297
(
2005
).
60.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
61.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
62.
C.
Lee
,
W.
Yang
, and
R.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
63.
J. P.
Perdew
,
M.
Ernzerhof
, and
K.
Burke
,
J. Chem. Phys.
105
,
9982
(
1996
).
64.
W.
Koch
and
M. C.
Holthausen
,
A Chemist’s Guide to Density Functional Theory
, 2nd ed. (
Wiley-VCH Verlag GmbH
,
Berlin
,
2001
), p.
134
.
65.
K.
Jug
,
B.
Zimmermann
,
P.
Calaminici
, and
A. M.
Köster
,
J. Chem. Phys.
116
,
4497
(
2002
).
66.
P.
Calaminici
,
A. M.
Köster
, and
Z.
Gomez-Sandoval
,
J. Chem. Theory Comput.
3
,
905
(
2007
).
67.
G. H.
Guvelioglu
,
P.
Ma
,
X.
He
,
R. C.
Forrey
, and
H.
Cheng
,
Phys. Rev. B
73
,
155436
(
2006
).
68.
P.
Jaque
and
A.
Toro-Labbe
,
J. Chem. Phys.
117
,
3208
(
2002
).
69.
M.
Yang
,
K. A.
Jackson
,
C.
Koehler
,
T.
Frauenheim
, and
J.
Jellinek
,
J. Chem. Phys.
124
,
024308
(
2006
).
70.
W.-D.
Hsu
,
M.
Ichihashi
,
T.
Kondow
, and
S. B.
Sinott
,
J. Chem. Phys.
124
,
024308
(
2006
).
71.
S.
Mukherjee
,
F.
Libisch
,
N.
Large
,
O.
Neumann
,
L. V.
Brown
,
J.
Cheng
,
B.
Lassiter
,
E. A.
Carter
,
P.
Nordlander
, and
N. J.
Halas
,
Nano Lett.
13
,
240
(
2013
).
72.
S.
Mukherjee
,
L.
Zhou
,
A. M.
Goodman
,
N.
Large
,
C.
Ayala-Orozco
,
Y.
Zhang
,
P.
Nordlander
, and
N. J.
Halas
,
J. Am. Chem. Soc.
136
,
64
(
2014
).
73.
F.
Libisch
,
J.
Cheng
, and
E. A.
Carter
,
Z. Phys. Chem.
227
,
1455
(
2013
).
74.
See supplementary material at http://dx.doi.org/10.1063/1.4915127 for more details on the density of state spectra for the considered copper clusters, vertical excitations, molecular orbital plots, and vibrational displacement vectors.

Supplementary Material

You do not currently have access to this content.