We propose the Same Number Of Optimized Parameters (SNOOP) scheme as an alternative to the counterpoise method for treating basis set superposition errors in calculations of intermolecular interaction energies. The key point of the SNOOP scheme is to enforce that the number of optimized wave function parameters for the noninteracting system is the same as for the interacting system. This ensures a delicate balance between the quality of the monomer and dimer finite basis set calculations. We compare the SNOOP scheme to the uncorrected and counterpoise schemes theoretically as well as numerically. Numerical results for second-order Møller-Plesset perturbation theory (MP2) and coupled-cluster with single, double, and approximate triple excitations (CCSD(T)) show that the SNOOP scheme in general outperforms the uncorrected and counterpoise approaches. Furthermore, we show that SNOOP interaction energies calculated using a given basis set are of similar quality as those determined by basis set extrapolation of counterpoise-corrected results obtained at a similar computational cost.

1.
B.
Liu
and
A.
McLean
,
J. Chem. Phys.
59
,
4557
(
1973
).
2.
S. F.
Boys
and
F.
Bernardi
,
Mol. Phys.
19
,
553
(
1970
).
3.
J.
Daudey
,
P.
Claverie
, and
J.
Malrieu
,
Int. J. Quantum Chem.
8
,
1
(
1974
).
4.
J. H.
van Lenthe
,
T.
van Dam
,
F. B.
van Duijneveldt
, and
L. M. J.
Kroon-Batenburg
,
Faraday Symp. Chem. Soc.
19
,
125
(
1984
).
5.
M.
Gutowski
,
J.
van Lenthe
,
J.
Verbeek
,
F.
van Duijneveldt
, and
G.
Chałasinski
,
Chem. Phys. Lett.
124
,
370
(
1986
).
6.
M.
Gutowski
,
F. B.
van Duijneveldt
,
G.
Chalasinki
, and
L.
Piela
,
Mol. Phys.
61
,
233
(
1987
).
7.
G.
Chalasinski
and
M.
Gutowski
,
Chem. Rev.
88
,
943
(
1988
).
8.
J. H.
van Lenthe
,
J. G. C. M.
van Duijneveldt-van de Rijdt
, and
F. B.
van Duijneveldt
,
Adv. Chem. Phys.
69
,
521
(
1987
).
9.
S.
Scheiner
,
Reviews in Computational Chemistry
(
VCH
,
New York
,
1991
), p.
165
.
10.
I.
Mayer
and
L.
Turi
,
J. Mol. Struct.: THEOCHEM
227
,
43
(
1991
).
11.
M.
Gutowski
,
J. G. C. M.
van Duijneveldt-van de Rijdt
,
J. H.
van Lenthe
, and
F. B.
van Duijneveldt
,
J. Chem. Phys.
98
,
4728
(
1993
).
12.
M.
Gutowski
and
G.
Chalasinski
,
J. Chem. Phys.
98
,
5540
(
1993
).
13.
D.
Cook
,
J. A.
Sordo
, and
T. L.
Sordo
,
Int. J. Quantum Chem.
48
,
375
(
1993
).
14.
F. B.
van Duijneveldt
,
J. G. C. M.
van Duijneveldt-vande Rijdt
, and
J. H.
van Lenthe
,
Chem. Rev.
94
,
1873
(
1994
).
15.
R.
Wieczorek
,
L.
Haskamp
, and
J. J.
Dannenberg
,
J. Phys. Chem. A
108
,
6713
(
2004
).
16.
L. M.
Mentel
and
E. J.
Baerends
,
J. Chem. Theory Comput.
10
,
252
(
2013
).
17.
M.
Schütz
,
S.
Brdarski
,
P.-O.
Widmark
,
R.
Lindh
, and
G.
Karlström
,
J. Chem. Phys.
107
,
4597
(
1997
).
18.
L. A.
Burns
,
M. S.
Marshall
, and
C. D.
Sherrill
,
J. Chem. Theory Comput.
10
,
49
(
2014
).
19.
B.
Brauer
,
M. K.
Kesharwani
, and
J. M.
Martin
,
J. Chem. Theory Comput.
10
,
3791
(
2014
).
20.
H.
Kruse
and
S.
Grimme
,
J. Chem. Phys.
136
,
154101
(
2012
).
21.
B.
Jeziorski
and
W.
Kolos
,
Molecular Interactions
(
Wiley
,
New York
,
1982
), p.
1
.
22.
B.
Jeziorski
,
R.
Moszynski
, and
K.
Szalewicz
,
Chem. Rev.
94
,
1887
(
1994
).
23.
I.
Mayer
,
Int. J. Quantum Chem.
23
,
341
(
1983
).
24.
J.
Noga
and
A.
Vibok
,
Chem. Phys. Lett.
180
,
114
(
1991
).
25.
J. M.
Cullen
,
Int. J. Quantum Chem. Symp.
25
,
193
(
1991
).
26.
A. J.
Sadlej
,
J. Chem. Phys.
95
,
6705
(
1991
).
27.
C.
Møller
and
M. S.
Plesset
,
Phys. Rev.
46
,
618
(
1934
).
28.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
29.
T.
Helgaker
,
P.
Jørgensen
, and
J.
Olsen
,
Molecular Electronic Structure Theory
, 1st ed. (
Wiley
,
Chichester, England
,
2000
).
30.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
31.
K.
Aidas
,
C.
Angeli
,
K. L.
Bak
,
V.
Bakken
,
R.
Bast
,
L.
Boman
,
O.
Christiansen
,
R.
Cimiraglia
,
S.
Coriani
,
P.
Dahle
,
E. K.
Dalskov
,
U.
Ekström
,
T.
Enevoldsen
,
J. J.
Eriksen
,
P.
Ettenhuber
,
B.
Fernández
,
L.
Ferrighi
,
H.
Fliegl
,
L.
Frediani
,
K.
Hald
,
A.
Halkier
,
C.
Hättig
,
H.
Heiberg
,
T.
Helgaker
,
A. C.
Hennum
,
H.
Hettema
,
E.
Hjertenæs
,
S.
Høst
,
I.-M.
Høyvik
,
M. F.
Iozzi
,
B.
Jansik
,
H. J. A.
Jensen
,
D.
Jonsson
,
P.
Jørgensen
,
J.
Kauczor
,
S.
Kirpekar
,
T.
Kjærgaard
,
W.
Klopper
,
S.
Knecht
,
R.
Kobayashi
,
H.
Koch
,
J.
Kongsted
,
A.
Krapp
,
K.
Kristensen
,
A.
Ligabue
,
O. B.
Lutnæs
,
J. I.
Melo
,
K. V.
Mikkelsen
,
R. H.
Myhre
,
C.
Neiss
,
C. B.
Nielsen
,
P.
Norman
,
J.
Olsen
,
J. M. H.
Olsen
,
A.
Osted
,
M. J.
Packer
,
F.
Pawlowski
,
T. B.
Pedersen
,
P. F.
Provasi
,
S.
Reine
,
Z.
Rinkevicius
,
T. A.
Ruden
,
K.
Ruud
,
V.
Rybkin
,
P.
Salek
,
C. C. M.
Samson
,
A. S.
de Merás
,
T.
Saue
,
S. P. A.
Sauer
,
B.
Schimmelpfennig
,
K.
Sneskov
,
A. H.
Steindal
,
K. O.
Sylvester-Hvid
,
P. R.
Taylor
,
A. M.
Teale
,
E. I.
Tellgren
,
D. P.
Tew
,
A. J.
Thorvaldsen
,
L.
Thøgersen
,
O.
Vahtras
,
M. A.
Watson
,
D. J. D.
Wilson
,
M.
Ziolkowski
, and
H.
Ågren
,
WIREs Comput. Mol. Sci.
4
,
269
(
2013
).
32.
A.
Halkier
,
T.
Helgaker
,
P.
Jørgensen
,
W.
Klopper
,
H.
Koch
,
J.
Olsen
, and
A. K.
Wilson
,
Chem. Phys. Lett.
286
,
243
(
1998
).
33.
A.
Halkier
,
H.
Koch
,
P.
Jørgensen
,
O.
Christiansen
,
I. M. B.
Nielsen
, and
T.
Helgaker
,
Theor. Chim. Acta
97
,
150
(
1997
).
34.
Hydrogen fluroide dimer geometry at the MP2/TZVP level is available at http://cccbdb.nist.gov.
35.
P.
Jurečka
,
J.
Šponer
,
J.
Černỳ
, and
P.
Hobza
,
Phys. Chem. Chem. Phys.
8
,
1985
(
2006
).
36.
C. D.
Sherrill
,
T.
Takatani
, and
E. G.
Hohenstein
,
J. Phys. Chem. A
113
,
10146
(
2009
).
You do not currently have access to this content.