As a further development of the previously introduced a posteriori Universal State-Selective (USS) corrections [K. Kowalski, J. Chem. Phys. 134, 194107 (2011); J. Brabec et al., ibid. 136, 124102 (2012)], we suggest an iterative form of the USS correction by means of correcting effective Hamiltonian matrix elements. We also formulate USS corrections via the left Bloch equations. The convergence of the USS corrections with excitation level towards the full configuration interaction (FCI) limit is also investigated. Various forms of the USS and simplified diagonal USS corrections at the singles and doubles and perturbative triple levels are numerically assessed on several model systems and on the ozone and tetramethyleneethane molecules. It is shown that the iterative USS correction can successfully replace the previously developed a posteriori Brillouin-Wigner coupled cluster size-extensivity correction, while it is not sensitive to intruder states and performs well also in other cases when the a posteriori one fails, like, e.g., for the asymmetric vibration mode of ozone.

1.
J.
Čížek
,
J. Chem. Phys.
45
,
4256
(
1966
).
2.
B.
Jeziorski
and
H. J.
Monkhorst
,
Phys. Rev. A
24
,
1668
(
1981
).
3.
P.
Piecuch
and
J.
Paldus
,
Theor. Chim. Acta
83
,
69
(
1992
).
4.
J.
Paldus
,
P.
Piecuch
,
L.
Pylypow
, and
B.
Jeziorski
,
Phys. Rev. A
47
,
2738
(
1993
).
5.
S. A.
Kucharski
and
R. J.
Bartlett
,
J. Chem. Phys.
95
,
8227
(
1991
).
6.
P.
Piecuch
and
J.
Paldus
,
J. Chem. Phys.
101
,
5875
(
1994
).
7.
K.
Kowalski
and
P.
Piecuch
,
Mol. Phys.
102
,
2425
(
2004
).
8.
J.
Pittner
and
P.
Piecuch
,
Mol. Phys.
107
,
1209
(
2009
).
9.
X.
Li
and
J.
Paldus
,
J. Chem. Phys.
134
,
214118
(
2011
).
10.
P.
Piecuch
and
K.
Kowalski
,
Int. J. Mol. Sci.
3
,
676
(
2002
).
11.
J.
Paldus
,
J.
Pittner
, and
P.
Čársky
, in
Recent Progress in Coupled Cluster Methods
, edited by
P.
Čársky
,
J.
Paldus
, and
J.
Pittner
(
Springer
,
Berlin
,
2010
), pp.
455
490
.
12.
B.
Jeziorski
,
Mol. Phys.
108
,
3043
(
2010
).
13.
J.
Paldus
,
J.
Čížek
, and
M.
Takahashi
,
Phys. Rev. A
30
,
2193
(
1984
).
14.
J.
Paldus
,
M.
Takahashi
, and
R. W. H.
Cho
,
Phys. Rev. B
30
,
4267
(
1984
).
15.
P.
Piecuch
,
R.
Tobola
, and
J.
Paldus
,
Phys. Rev. A
54
,
1210
(
1996
).
16.
X.
Li
and
J.
Paldus
,
J. Chem. Phys.
107
,
6257
(
1997
).
17.
X.
Li
and
J.
Paldus
,
J. Chem. Phys.
119
,
5320
(
2003
).
18.
X.
Li
and
J.
Paldus
,
J. Chem. Phys.
119
,
5334
(
2003
).
19.
X.
Li
and
J.
Paldus
,
J. Chem. Phys.
119
,
5346
(
2003
).
20.
I.
Hubač
,
New Methods in Quantum Theory
,
NATO ASI Series 3: High Technology
Vol.
8
, edited by
A.
Tsipis
,
V. S.
Popov
,
D. R.
Herschbach
, and
J. S.
Avery
(
Kluwer
,
Dordrecht
,
1996
), pp.
183
202
.
21.
I.
Hubač
,
J.
Mášik
,
P.
Mach
,
J.
Urban
, and
P.
Babinec
, in
Computational Chemistry. Reviews of Current Trends
, edited by
J.
Leszczynski
(
World Scientific
,
Singapore
,
1999
), Vol.
3
, pp.
1
48
.
22.
J.
Mášik
and
I.
Hubač
,
Adv. Quantum Chem.
31
,
75
(
1998
).
23.
J.
Pittner
,
P.
Nachtigall
,
P.
Čársky
,
J.
Mášik
, and
I.
Hubač
,
J. Chem. Phys.
110
,
10275
(
1999
).
24.
I.
Hubač
,
J.
Pittner
, and
P.
Čársky
,
J. Chem. Phys.
112
,
8779
(
2000
).
25.
J.
Pittner
,
J. Chem. Phys.
118
,
10876
(
2003
).
26.
J.
Pittner
,
H.
Valdes-González
,
R. J.
Gdanitz
, and
P.
Čársky
,
Chem. Phys. Lett.
386
,
211
(
2004
).
27.
J.
Pittner
and
O.
Demel
,
J. Chem. Phys.
122
,
181101
(
2005
).
28.
O.
Demel
and
J.
Pittner
,
J. Chem. Phys.
124
,
144112
(
2006
).
29.
J.
Pittner
and
J.
Šmydke
,
J. Chem. Phys.
127
,
114103
(
2007
).
30.
O.
Demel
and
J.
Pittner
,
J. Chem. Phys.
128
,
104108
(
2008
).
31.
J. C.
Sancho-García
,
J.
Pittner
,
P.
Čársky
, and
I.
Hubač
,
J. Chem. Phys.
112
,
8785
(
2000
).
32.
U. S.
Mahapatra
,
B.
Datta
, and
D.
Mukherjee
,
J. Chem. Phys.
110
,
6171
(
1999
).
33.
F. A.
Evangelista
,
W. D.
Allen
, and
H. F.
Schaefer
III
,
J. Chem. Phys.
125
,
154113
(
2006
).
34.
F. A.
Evangelista
,
W. D.
Allen
, and
H. F.
Schaefer
III
,
J. Chem. Phys.
127
,
024102
(
2007
).
35.
F. A.
Evangelista
,
A. C.
Simmonett
,
W. D.
Allen
,
H. F.
Schaefer
III
, and
J.
Gauss
,
J. Chem. Phys.
128
,
124104
(
2008
).
36.
F. A.
Evangelista
,
E.
Prochnow
,
J.
Gauss
, and
H. F.
Schaefer
III
,
J. Chem. Phys.
132
,
074107
(
2010
).
37.
S.
Das
,
D.
Mukherjee
, and
M.
Kállay
,
J. Chem. Phys.
132
,
074103
(
2010
).
38.
K.
Bhaskaran-Nair
,
O.
Demel
, and
J.
Pittner
,
J. Chem. Phys.
129
,
184105
(
2008
).
39.
K.
Bhaskaran-Nair
,
O.
Demel
, and
J.
Pittner
,
J. Chem. Phys.
132
,
154105
(
2010
).
40.
O.
Demel
,
K.
Bhaskaran-Nair
, and
J.
Pittner
,
J. Chem. Phys.
133
,
134106
(
2010
).
41.
T.-C.
Jagau
and
J.
Gauss
,
J. Chem. Phys.
137
,
044116
(
2012
).
42.
D.
Šimsa
,
O.
Demel
,
K.
Bhaskaran-Nair
,
I.
Hubač
,
P.
Mach
, and
J.
Pittner
,
Chem. Phys.
401
,
203
(
2012
).
43.
S.
Das
,
M.
Kallay
, and
D.
Mukherjee
,
Chem. Phys.
392
,
83
(
2012
).
44.
X.
Li
and
J.
Paldus
,
Chem. Phys. Lett.
496
,
183
(
2010
).
45.
X.
Li
and
J.
Paldus
,
J. Chem. Phys.
133
,
184106
(
2010
).
46.
R.
Maitra
,
D.
Sinha
, and
D.
Mukherjee
,
J. Chem. Phys.
137
,
024105
(
2012
).
47.
D.
Sinha
,
R.
Maitra
, and
D.
Mukherjee
,
J. Chem. Phys.
137
,
094104
(
2012
).
48.
J.
Brabec
,
H. J. J.
van Dam
,
J.
Pittner
, and
K.
Kowalski
,
J. Chem. Phys.
136
,
124102
(
2012
).
49.
E.
Prochnow
,
M. E.
Harding
, and
J.
Gauss
,
J. Chem. Theory Comput.
6
,
2339
(
2010
).
50.
J.
Brabec
,
S.
Krishnamoorthy
,
H.
van Dam
,
K.
Kowalski
, and
J.
Pittner
,
Chem. Phys. Lett.
514
,
347
(
2011
).
51.
J.
Brabec
,
J.
Pittner
,
H. J. J.
van Dam
,
E.
Apra
, and
K.
Kowalski
,
J. Chem. Theory Comput.
8
,
487
(
2012
).
52.
J.
Brabec
,
K.
Bhaskaran-Nair
,
N.
Govind
,
J.
Pittner
, and
K.
Kowalski
,
J. Chem. Phys.
137
,
171101
(
2012
).
53.
K.
Bhaskaran-Nair
,
J.
Brabec
,
E.
Apra
,
H. J. J.
van Dam
,
J.
Pittner
, and
K.
Kowalski
,
J. Chem. Phys.
137
,
094112
(
2012
).
54.
J.
Brabec
,
K.
Bhaskaran-Nair
,
K.
Kowalski
,
J.
Pittner
, and
H. J. J.
van Dam
,
Chem. Phys. Lett.
542
,
128
(
2012
).
55.
S.
Kedžuch
,
O.
Demel
,
J.
Pittner
, and
J.
Noga
, in
Recent Progress in Coupled Cluster Methods
, edited by
P.
Čársky
,
J.
Paldus
, and
J.
Pittner
(
Springer
,
Berlin
,
2010
), pp.
251
266
.
56.
S.
Kedžuch
,
O.
Demel
,
J.
Pittner
,
S.
Ten-no
, and
J.
Noga
,
Chem. Phys. Lett.
511
,
418
(
2011
).
57.
O.
Demel
,
S.
Kedžuch
,
M.
Švaňa
,
S.
Ten-no
,
J.
Pittner
, and
J.
Noga
,
Phys. Chem. Chem. Phys.
14
,
4753
(
2012
).
58.
O.
Demel
,
S.
Kedžuch
,
J.
Noga
, and
J.
Pittner
,
Mol. Phys.
111
,
2477
(
2013
).
59.
U. S.
Mahapatra
and
S.
Chattopadhyay
,
J. Chem. Phys.
133
,
074102
(
2010
).
60.
U. S.
Mahapatra
and
S.
Chattopadhyay
,
J. Chem. Phys.
134
,
044113
(
2011
).
61.
L.
Kong
,
Int. J. Quantum Chem.
109
,
441
(
2009
).
62.
K.
Kowalski
,
J. Chem. Phys.
134
,
194107
(
2011
).
63.
J.
Arponen
,
Ann. Phys.
151
,
311
(
1983
).
64.
E.
Salter
,
G.
Trucks
, and
R.
Bartlett
,
J. Chem. Phys.
90
,
1752
(
1989
).
65.
H.
Koch
and
P.
Jörgensen
,
J. Chem. Phys.
93
,
3333
(
1990
).
66.
K.
Bhaskaran-Nair
and
K.
Kowalski
,
J. Chem. Phys.
138
,
204114
(
2013
).
67.
M.
Valiev
,
E.
Bylaska
,
N.
Govind
,
K.
Kowalski
,
T.
Straatsma
,
H.
van Dam
,
D.
Wang
,
J.
Nieplocha
,
E.
Apra
,
T.
Windus
, and
W.
de Jong
,
Comput. Phys. Commun.
181
,
1477
(
2010
).
68.
K.
Kowalski
and
P.
Piecuch
,
J. Chem. Phys.
113
,
18
(
2000
).
69.
K.
Kowalski
and
P.
Piecuch
,
J. Mol. Struct.: THEOCHEM
547
,
191
(
2001
).
70.
S.
Hirata
,
J. Phys. Chem. A
107
,
9887
(
2003
).
71.
K.
Jankowski
,
L.
Meissner
, and
J.
Wasilewski
,
Int. J. Quantum Chem.
28
,
931
(
1985
).
72.
W. J.
Hehre
,
R.
Ditchfie
, and
J. A.
Pople
,
J. Chem. Phys.
56
,
2257
(
1972
).
73.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
53
,
2823
(
1970
).
74.
G. D.
Purvis
,
R.
Shepard
,
F. B.
Brown
, and
R. J.
Bartlett
,
Int. J. Quantum Chem.
23
,
835
(
1983
).
75.
P.
Piecuch
and
J.
Paldus
,
J. Phys. Chem.
99
,
15354
(
1995
).
76.
J. D.
Watts
and
R. J.
Bartlett
,
J. Chem. Phys.
108
,
2511
(
1998
).
77.
S. A.
Kucharski
and
R. J.
Bartlett
,
J. Chem. Phys.
110
,
8233
(
1999
).
78.
P. G.
Szalay
and
R. J.
Bartlett
,
Chem. Phys. Lett.
214
,
481
(
1993
).
79.
P.
Borowski
,
K.
Andersson
,
P. A.
Malmqvist
, and
B. O.
Roos
,
J. Chem. Phys.
97
,
5568
(
1992
).
80.
M. L.
Leininger
and
H. F.
Schaefer
III
,
J. Chem. Phys.
107
,
9059
(
1997
).
81.
W.
Wenzel
and
M. M.
Steiner
,
J. Chem. Phys.
108
,
4714
(
1998
).
82.
X.
Li
and
J.
Paldus
,
J. Chem. Phys.
110
,
2844
(
1999
).
83.
K.
Bhaskaran-Nair
,
O.
Demel
,
J.
Šmydke
, and
J.
Pittner
,
J. Chem. Phys.
134
,
154106
(
2011
).
84.
A.
Barbe
,
C.
Secroun
, and
P.
Jouve
,
J. Mol. Spectrosc.
49
,
171
(
1971
).
85.
J.
Pittner
,
P.
Nachtigall
,
P.
Čársky
, and
I.
Hubač
,
J. Phys. Chem. A
105
,
1354
(
2001
).
86.
P.
Dowd
,
J. Am. Chem. Soc.
92
,
1066
(
1970
).
87.
W.
Borden
and
E. R.
Davidson
,
J. Am. Chem. Soc.
99
,
4587
(
1977
).
88.
P.
Du
and
W. T.
Borden
,
J. Am. Chem. Soc.
109
,
930
(
1987
).
89.
P.
Nachtigall
and
K. D.
Jordan
,
J. Am. Chem. Soc.
114
,
4743
(
1992
).
90.
P.
Nachtigall
and
K. D.
Jordan
,
J. Am. Chem. Soc.
115
,
270
(
1993
).
91.
P.
Dowd
,
W.
Chang
, and
Y. H.
Paik
,
J. Am. Chem. Soc.
108
,
7416
(
1986
).
92.
E. P.
Clifford
,
P. G.
Wenthold
,
W. C.
Lineberger
,
G. B.
Ellison
,
C. X.
Wang
,
J. J.
Grabowski
,
F.
Vila
, and
K. D.
Jordan
,
J. Chem. Soc., Perkin Trans. 2
1998
,
1015
.
93.
P.
Dowd
,
W.
Chang
,
C. J.
Partian
, and
W.
Zhang
,
J. Phys. Chem.
97
,
13408
(
1993
).
94.
M.
Filatov
and
S.
Shaik
,
J. Phys. Chem. A
103
,
8885
(
1999
).
You do not currently have access to this content.