To investigate whether a non-exponential relaxation always indicates 2-4 nm-size regions of dynamic heterogeneity, we studied the kinetic freezing and unfreezing of structural fluctuations involving the rotational modes in orientationally disordered crystal (ODIC) of levoglucosan by calorimetry. The heat capacity, Cp, of levoglucosan measured over the 203 K–463 K range shows that its low-temperature, orientationally ordered crystal (ORC) transforms to ODIC phase on heating, which then melts to a low viscosity liquid. On cooling, the melt transforms to the ODIC which then does not transform to the ORC. Instead, the ODIC supercools. Fluctuations resulting from hindered (random) rotations of levoglucosan molecules confined to the lattice sites and from their conformational changes become progressively slower on cooling and an orientational glass (O-G) forms showing the sigmoid shape decrease in Cp characteristic of structural arrest like that of a glass. On heating the O-G state, rotational fluctuations begin to contribute to Cp at To-g of 247.8 K and there is an overshoot in Cp and thermal hysteresis (characteristic of physical ageing) in the temperature range of 230–260 K. The non-exponential relaxation parameter, βcal, determined by fitting the Cp data to a non-exponential, nonlinear model for relaxation of a glass is 0.60, which is similar to βcal found for polymers, molecular liquids, and metal-alloy melts in which Brownian diffusion occurs. Such βcal < 1 are seen to indicate 2-4 nm-size dynamically heterogeneous domains in an ultraviscous liquid near the glass formation, but its value of 0.60 for ODIC levoglucosan, in which Brownian diffusion does not occur, would not indicate such domains. Despite the lack of Brownian diffusion, we discuss these findings in the potential energy landscape paradigm. Levoglucosan melt, which is believed to vitrify and to stabilize a protein’s disordered structure, did not supercool even at 200 K/min cooling rate. The findings have consequences for reports on the dielectric relaxation studies that indicated that levoglucosan melt supercools to form a structural glass of Tg of ∼245 K, and for computer simulation of its dynamics. Levoglucosan is the ninth ODIC that forms O-G. It does so more easily than the other eight.

1.
G.
Adam
and
J. H.
Gibbs
,
J. Chem. Phys.
43
,
139
(
1965
).
2.
D.
Turnbull
,
Contemp. Phys.
10
,
473
(
1969
).
3.
G.
Grest
and
M. H.
Cohen
,
Adv. Chem. Phys.
48
,
455
(
1981
).
4.
K. L.
Ngai
,
R.
Casalini
,
S.
Capaccioli
,
M.
Paluch
, and
C. M.
Roland
,
Advances in Chemical Physics
(
Wiley
,
NY
,
2006
), Vol.
133B
, Chap. 10.
5.
K. L.
Ngai
,
Relaxation and Diffusion in Complex Systems
(
Springer
,
New York
,
2011
).
6.
G. P.
Johari
and
J.
Khouri
,
J. Chem. Phys.
138
,
12A511
(
2013
).
7.
K.
Kishimoto
,
H.
Suga
, and
S.
Seki
,
Bull. Chem. Soc. Jpn.
46
,
3020
(
1973
).
8.
S.
Vyazovkin
and
I.
Dranca
,
J. Phys. Chem. B
109
,
18637
(
2005
).
9.
S.
Kaya
and
H.
Sato
,
Proc. Phys. Math. Soc. Jpn.
25
,
261
(
1943
).
10.
G. P.
Johari
and
D. P. B.
Aji
,
J. Chem. Phys.
133
,
056101
(
2010
).
11.
J. N.
Sherwood
,
Plastically Crystalline State, Orientationally Disordered Crystals
(
Wiley
,
New York
,
1979
).
12.
H.
Suga
,
J. Phys.: Condens. Matter
15
,
S775
(
2003
).
13.
O.
Yamamuro
,
H.
Yamasaki1
,
Y.
Madokoro
,
I.
Tsukushi
, and
T.
Matsuo
,
J. Phys.: Condens. Matter
15
,
5439
(
2003
).
14.
K. K.
Kelley
,
J. Am. Chem. Soc.
51
,
1400
(
1929
).
15.
K.
Adachi
,
H.
Suga
, and
S.
Seki
,
Bull. Chem. Soc. Jpn.
41
,
1073
(
1968
).
16.
O.
Andersson
and
R. G.
Ross
,
Mol. Phys.
71
,
523
(
1990
).
17.
N.
Nikitin
,
I. Yu.
Levdik
, and
M. A.
Ivanov
,
Zhur. Struct. Khimi.
9
,
1011
(
1968
), (in Russian).
18.
F.
Shafizadehm
,
G. D.
McGinnes
,
R. A.
Susott
, and
C. W.
Philpot
,
Carbohydr. Res.
15
,
165
(
1970
).
19.
I. M.
Rocha
,
T. L. P.
Galvao
,
E.
Sapei
,
M. D. M. C.
Robiero da Silva
, and
M. A. V.
Robiero da Silva
,
J. Chem. Eng. Data
58
,
1813
(
2013
).
20.
K.
Kaminski
,
P.
Wlodarczyk
,
K.
Adrjanowicz
,
E.
Kaminska
,
Z.
Wojnarowka
, and
M.
Paluch
,
J. Phys. Chem. B
114
,
11272
(
2010
).
21.
Y. H.
Liao
,
M. B.
Brown
,
A.
Quader
, and
G. P.
Martin
,
Pharm. Res.
19
,
1854
(
2002
).
22.
E.
Tombari
and
G. P.
Johari
,
J. Chem. Phys.
141
,
074502
(
2014
).
23.
D. P. B.
Aji
,
J.
Khouri
, and
G. P.
Johari
,
J. Chem. Phys.
141
,
174507
(
2014
).
24.
25.
O. S.
Narayanaswamy
,
J. Am. Ceram. Soc.
54
,
491
(
1971
).
26.
C. T.
Moynihan
,
P. B.
Macedo
,
C. J.
Montrose
,
P. K.
Gupta
,
M. A.
Debolt
,
J. F.
Dill
,
B. E.
Dom
,
P. W.
Drake
,
A. J.
Easteal
,
P. B.
Eltermann
,
R. A.
Moeller
,
H.
Sasabe
, and
J. A.
Wilder
,
Ann. N. Y. Acad. Sci.
279
,
15
(
1976
).
27.
I. M.
Hodge
,
J. Non-Cryst. Solids
169
,
211
(
1994
).
28.
A. J.
Kovacs
,
J. J.
Aklonis
,
J. M.
Hutchinson
, and
A. R.
Ramos
,
J. Polym. Sci., Polym. Phys. Ed.
17
,
1097
(
1979
).
29.
M.
Goldstein
,
J. Chem. Phys.
51
,
3728
(
1969
).
30.
D. J.
Wales
,
Energy Landscapes, With Applications to Clusters, Biomolecules and Glasses
(
Cambridge University Press
,
Cambridge
,
2003
).
31.
See supplementary material at http://dx.doi.org/10.1063/1.4913759 for the sensitivity of theβ and x parameters fit on an enlarged scale.
32.
G. P.
Johari
,
Phys. Rev. E
84
,
021501
(
2011
).
33.
W. W.
Graessley
,
J. Chem. Phys.
130
,
164502
(
2009
).
34.
S. A.
Reinsberg
,
X. H.
Qiu
,
M.
Wilhelm
,
H. W.
Spiess
, and
M. D.
Ediger
,
J. Chem. Phys.
114
,
7299
(
2001
).
35.
S. A.
Mackowiak
,
L. M.
Leone
, and
L. J.
Kaufman
,
Phys. Chem. Chem. Phys.
13
,
1786
(
2011
).
36.
C. K.
Majumdar
,
Solid State Commun.
9
,
1087
(
1971
).
37.
G. P.
Johari
and
J.
Khouri
,
J. Chem. Phys.
137
,
104502
(
2012
).
38.
C. T.
Moynihan
and
J.
Shroeder
,
J. Non-Cryst. Solids
160
,
52
(
1993
).
39.
N. A.
Bokov
,
J. Non-Cryst. Solids
177
,
74
(
1994
).
40.
N. A.
Bokov
,
J. Non-Cryst. Solids
354
,
1119
(
2008
).
41.
R.
Brand
,
P.
Lunkenheimer
,
U.
Schneider
, and
A.
Loidl
,
Phys. Rev. Lett.
82
,
1951
(
1999
).
42.
R.
Brand
,
P.
Lunkenheimer
, and
A.
Loidl
,
J. Chem. Phys.
116
,
10386
(
2002
).
43.
K.
Pathmanathan
and
G. P.
Johari
,
J. Phys. C: Solid State Phys.
18
,
6535
(
1985
).
44.
D. A.
Turton
and
K.
Wynne
,
J. Chem. Phys.
131
,
201101
(
2009
).
45.
A.
Haida
,
H.
Suga
, and
S.
Seki
,
J. Chem. Thermodyn.
9
,
1133
(
1977
).
46.
M. A.
Ramos
,
I. M.
Shmyt’ko
,
E. A.
Arnautova
,
R. J.
Jiménez-Riobóo
,
V.
Rodrıguez-Mora
,
S.
Vieira
, and
M. J.
Capitán
,
J. Non-Cryst. Solids
352
,
4769
(
2006
).
47.
K. K.
Kelley
,
J. Am. Chem. Soc.
51
,
779
(
1929
).
48.
S.
Benkhof
,
A.
Kudlik
,
T.
Blochowicz
, and
E.
Rössler
,
J. Phys.: Condens. Matter
10
,
8155
(
1998
).
49.
M.
Jimenez-Ruiz
,
M. A.
Gonzalez
,
F. J.
Bermejo
,
M. A.
Miller
,
N. O.
Birge
,
I.
Cendoya
, and
A.
Alegrıa
,
Phys. Rev. B
59
,
9155
(
1999
).
50.
E.
Tombari
,
C.
Ferrari
,
G.
Salvetti
, and
G. P.
Johari
,
J. Chem. Phys.
126
,
021107
(
2007
).

Supplementary Material

You do not currently have access to this content.