We report theoretical and experimental total cross sections for electron scattering by phenol (C6H5OH). The experimental data were obtained with an apparatus based in Madrid and the calculated cross sections with two different methodologies, the independent atom method with screening corrected additivity rule (IAM-SCAR), and the Schwinger multichannel method with pseudopotentials (SMCPP). The SMCPP method in the Nopen-channel coupling scheme, at the static-exchange-plus-polarization approximation, is employed to calculate the scattering amplitudes at impact energies ranging from 5.0 eV to 50 eV. We discuss the multichannel coupling effects in the calculated cross sections, in particular how the number of excited states included in the open-channel space impacts upon the convergence of the elastic cross sections at higher collision energies. The IAM-SCAR approach was also used to obtain the elastic differential cross sections (DCSs) and for correcting the experimental total cross sections for the so-called forward angle scattering effect. We found a very good agreement between our SMCPP theoretical differential, integral, and momentum transfer cross sections and experimental data for benzene (a molecule differing from phenol by replacing a hydrogen atom in benzene with a hydroxyl group). Although some discrepancies were found for lower energies, the agreement between the SMCPP data and the DCSs obtained with the IAM-SCAR method improves, as expected, as the impact energy increases. We also have a good agreement among the present SMCPP calculated total cross section (which includes elastic, 32 inelastic electronic excitation processes and ionization contributions, the latter estimated with the binary-encounter-Bethe model), the IAM-SCAR total cross section, and the experimental data when the latter is corrected for the forward angle scattering effect [Fuss et al., Phys. Rev. A 88, 042702 (2013)].

1.
M.
Tashiro
,
J. Chem. Phys.
129
,
164308
(
2008
).
2.
Z.
Masín
,
J. D.
Gorfinkiel
,
D. B.
Jones
,
S. M.
Bellm
, and
M. J.
Brunger
,
J. Chem. Phys.
136
,
144310
(
2012
).
3.
T. N.
Rescigno
and
A. E.
Orel
,
Phys. Rev. A
88
,
012703
(
2013
).
4.
R. F.
da Costa
,
M. H. F.
Bettega
,
M. T. do N.
Varella
,
E. M.
de Oliveira
, and
M. A. P.
Lima
,
Phys. Rev. A
90
,
052707
(
2014
).
5.
R. F. C.
Neves
,
D. B.
Jones
,
M. C. A.
Lopes
,
K. L.
Nixon
,
G. B.
da Silva
,
H. V.
Duque
,
E. M.
de Oliveira
,
R. F.
da Costa
,
M. T. do N.
Varella
,
M. H. F.
Bettega
,
M. A. P.
Lima
,
K.
Ratnavelu
,
G.
García
, and
M. J.
Brunger
,
J. Chem. Phys.
142
,
104305
(
2015
); for technological applications of phenol, see the introduction of this paper and references therein.
6.
K.
Takatsuka
and
V.
McKoy
,
Phys. Rev. A
24
,
2473
(
1981
);
K.
Takatsuka
and
V.
McKoy
,
Phys. Rev. A
30
,
1734
(
1984
).
7.
J. S.
dos Santos
,
R. F.
da Costa
, and
M. T. do N.
Varella
,
J. Chem. Phys.
136
,
084307
(
2012
).
8.
M. H. F.
Bettega
,
L. G.
Ferreira
, and
M. A. P.
Lima
,
Phys. Rev. A
47
,
1111
(
1993
).
9.
R. F.
da Costa
,
F. J.
da Paixão
, and
M. A. P.
Lima
,
J. Phys. B: At., Mol. Opt. Phys.
37
,
L129
(
2004
).
10.
M. A. P.
Lima
,
T. L.
Gibson
,
K.
Takatsuka
, and
V.
McKoy
,
Phys. Rev. A
30
,
1741
(
1984
).
11.
E. M.
de Oliveira
,
R. F.
da Costa
,
S. dA.
Sanchez
,
A. P. P.
Natalense
,
M. H. F.
Bettega
,
M. A. P.
Lima
, and
M. T. do N.
Varella
,
Phys. Chem. Chem. Phys.
15
,
1682
(
2013
).
12.
Y.-K.
Kim
and
M. E.
Rudd
,
Phys. Rev. A
50
,
3954
(
1994
).
13.
Y.-K.
Kim
,
W.
Hwang
,
N. M.
Weinberger
,
M. A.
Ali
, and
M. E.
Rudd
,
J. Chem. Phys.
106
,
1026
(
1997
);
M. A.
Ali
,
Y.-K.
Kim
,
W.
Hwang
,
N. M.
Weinberger
, and
M. E.
Rudd
,
J. Chem. Phys.
106
,
9602
(
1997
);
H.
Nishimura
,
W. M.
Huo
,
M. A.
Ali
, and
Y.-K.
Kim
,
J. Chem. Phys.
110
,
3811
(
1999
).
14.
E. M.
de Oliveira
,
S. dA.
Sanchez
,
M. H. F.
Bettega
,
A. P. P.
Natalense
,
M. A. P.
Lima
, and
M. T. do N.
Varella
,
Phys. Rev. A
86
,
020701(R)
(
2012
).
15.
D. B.
Jones
,
G. B.
da Silva
,
R. F. C.
Neves
,
H. V.
Duque
,
L.
Chiari
,
E. M.
de Oliveira
,
M. C. A.
Lopes
,
R. F.
da Costa
,
M. T. do N.
Varella
,
M. H. F.
Bettega
,
M. A. P.
Lima
, and
M. J.
Brunger
,
J. Chem. Phys.
141
,
074314
(
2014
).
16.
CRC Handbook of Chemistry and Physics
, 79th ed., edited by
D. R.
Lide
(
CRC
,
Boca Raton
,
1998
).
17.
M. W.
Schmidt
,
K. K.
Baldridge
,
J. A.
Boatz
,
S. T.
Elbert
,
M. S.
Gordon
,
J. H.
Jensen
,
S.
Koseki
,
N.
Matsunaga
,
K. A.
Nguyen
,
S. J.
Su
,
T. L.
Windus
,
M.
Dupuis
, and
J. A.
Montgomery
,
J. Comput. Chem.
14
,
1347
(
1993
).
18.
M. A. P.
Lima
,
L. M.
Brescansin
,
A. J. R.
da Silva
,
C. L.
Winstead
, and
V.
McKoy
,
Phys. Rev. A
41
,
327
(
1990
).
19.
See http://cccbdb.nist.gov/ for the first ionization potential of phenol.
20.
G. B.
da Silva
,
R. F. C.
Neves
,
L.
Chiari
,
D. B.
Jones
,
E.
Ali
,
D. H.
Madison
,
C. G.
Ning
,
K. L.
Nixon
,
M. C. A.
Lopes
, and
M. J.
Brunger
,
J. Chem. Phys.
141
,
124307
(
2014
).
21.
M. C.
Fuss
,
A. G.
Sanz
,
F.
Blanco
,
J. C.
Oller
,
P.
Limão-Vieira
,
M. J.
Brunger
, and
G.
García
,
Phys. Rev. A
88
,
042702
(
2013
).
22.
A. G.
Sanz
,
M. C.
Fuss
,
F.
Blanco
,
J. D.
Gorfinkiel
,
D.
Almeida
,
F.
Ferreira da Silva
,
P.
Limão-Vieira
,
M. J.
Brunger
, and
G.
García
,
J. Chem. Phys.
139
,
184310
(
2013
).
23.
H.
Kato
,
A.
Suga
,
M.
Hoshino
,
F.
Blanco
,
G.
García
,
P.
Limão-Vieira
,
M. J.
Brunger
, and
H.
Tanaka
,
J. Chem. Phys.
136
,
134313
(
2012
).
24.
H.
Kato
,
K.
Anzai
,
T.
Ishihara
,
M.
Hoshino
,
F.
Blanco
,
G.
García
,
P.
Limão-Vieira
,
M. J.
Brunger
,
S. J.
Buckman
, and
H.
Tanaka
,
J. Phys. B: At., Mol. Opt. Phys.
45
,
095204
(
2012
).
25.
M. C.
Fuss
,
A. G.
Sanz
,
F.
Blanco
,
P.
Limão-Vieira
,
M. J.
Brunger
, and
G.
García
,
Eur. Phys. J. D
68
,
161
(
2014
).
26.
M.
Hoshino
,
M.
Horie
,
H.
Kato
,
F.
Blanco
,
G.
García
,
P.
Limão-Vieira
,
J. P.
Sullivan
,
M. J.
Brunger
, and
H.
Tanaka
,
J. Chem. Phys.
138
,
214305
(
2013
).
27.
M. E.
Riley
and
D. G.
Truhlar
,
J. Chem. Phys.
63
,
2182
(
1975
).
28.
X. Z.
Zhang
,
J. F.
Sun
, and
Y. F.
Liu
,
J. Phys. B: At., Mol. Opt. Phys.
25
,
1893
(
1992
).
29.
G.
Staszewska
,
D. W.
Schwenke
,
D.
Thirumalai
, and
D. G.
Truhlar
,
Phys. Rev. A
28
,
2740
(
1983
).
30.
F.
Blanco
and
G.
García
,
Phys. Lett. A
330
,
230
(
2004
).
31.
F.
Blanco
and
G.
García
,
J. Phys. B: At., Mol. Opt. Phys.
42
,
145203
(
2009
).
32.
A.
Jain
,
J. Phys. B: At., Mol. Opt. Phys.
21
,
905
(
1988
).
33.
J. R.
Brunton
,
L. R.
Hargreaves
,
S. J.
Buckman
,
G.
García
,
F.
Blanco
,
O.
Zatsarinny
,
K.
Bartschat
, and
M. J.
Brunger
,
Chem. Phys. Lett.
55
,
568
569
(
2013
).
34.
J. R.
Brunton
,
L. R.
Hargreaves
,
T. M.
Maddern
,
S. J.
Buckman
,
G.
García
,
F.
Blanco
,
O.
Zatsarinny
,
K.
Bartschat
,
D. B.
Jones
,
G. B.
da Silva
, and
M. J.
Brunger
,
J. Phys. B: At., Mol. Opt. Phys.
46
,
245203
(
2013
).
35.
P.
Palihawadana
,
J. P.
Sullivan
,
S. J.
Buckman
,
Z.
Mas̆ín
,
J. D.
Gorfinkiel
,
F.
Blanco
,
G.
García
, and
M. J.
Brunger
,
J. Chem. Phys.
139
,
014308
(
2013
).
37.
M. J.
Brunger
and
S. J.
Buckman
,
Phys. Rep.
357
,
215
(
2002
).
38.
H.
Cho
,
R. J.
Gulley
,
K.
Sunohara
,
M.
Kitajima
,
L. J.
Uhlmann
,
H.
Tanaka
, and
S. J.
Buckman
,
J. Phys. B: At., Mol. Opt. Phys.
34
,
1019
(
2001
).
39.
G. L. C.
de Souza
,
A. S.
dos Santos
,
R. R.
Lucchese
,
L. E.
Machado
,
L. M.
Brescansin
,
H. V.
Manini
,
I.
Iga
, and
M.-T.
Lee
,
Chem. Phys.
393
,
19
(
2012
).
40.
O.
Sueoka
,
J. Phys. B: At., Mol. Opt. Phys.
21
,
L631
(
1988
).
41.
P.
Mozejko
,
G.
Kasperski
,
G. P.
Karwasz
,
C.
Szmytkowski
,
R. S.
Brusa
, and
A.
Zecca
,
Chem. Phys. Lett.
257
,
309
(
1996
).
You do not currently have access to this content.