The Brownian motion of a particle in a fluid is often described by the linear Langevin equation, in which it is assumed that the mass of the particle is sufficiently large compared to the surrounding fluid molecules. This assumption leads to a diffusion coefficient that is independent of the particle mass. The Stokes-Einstein equation indicates that the diffusion coefficient depends solely on the particle size, but the concept of size can be ambiguous when close to the molecular scale. We first examine the Brownian motion of simple model particles based on short-range interactions in water by the molecular dynamics method and show that the diffusion coefficient can vary with mass when this mass is comparable to that of the solvent molecules, and that this effect is evident when the solute particle size is sufficiently small. We then examine the properties of a water molecule considered as a solute in the bulk solvent consisting of the remainder of the water. A comparison with simple solute models is used to clarify the role of force fields. The long-range Coulomb interaction between water molecules is found to lead to a Gaussian force distribution in spite of a mass ratio and nominal size ratio of unity, such that solutes with short-range interactions exhibit non-Gaussian force distribution. Thus, the range of the interaction distance determines the effective size even if it does not represent the volume excluded by the repulsive force field.

1.
E.
Nelson
,
Dynamical Theories of Brownian Motion
(
Princeton Univeristy Press
,
1967
).
2.
P.
Mazur
and
I.
Oppenheim
,
Physica
50
,
241
(
1970
).
3.
K.
Krynicki
,
C. D.
Green
, and
D. W.
Sawyer
,
Faraday Discuss. Chem. Soc.
66
,
199
(
1978
).
4.
T.
Tsukahara
,
W.
Mizutani
,
K.
Mawatari
, and
T.
Kitamori
,
J. Phys. Chem. B
113
,
10808
(
2009
).
5.
L.
Li
,
Y.
Kazoe
,
K.
Mawatari
,
Y.
Sugii
, and
T.
Kitamori
,
J. Phys. Chem. Lett.
3
,
2447
(
2012
).
6.
T.
Tsukahara
,
T.
Kuwahata
,
A.
Hibara
,
H.-B.
Kim
,
K.
Mawatari
, and
T.
Kitamori
,
Electrophoresis
30
,
3212
(
2009
).
7.
H.
Chinen
,
K.
Mawatari
,
Y.
Pihosh
,
K.
Morikawa
,
Y.
Kazoe
,
T.
Tsukahara
, and
T.
Kitamori
,
Angew. Chem., Int. Ed.
51
,
3573
(
2012
).
8.
T.
Tsukahara
,
A.
Hibara
,
Y.
Ikeda
, and
T.
Kitamori
,
Angew. Chem., Int. Ed.
46
,
1180
(
2007
).
9.
I.
Hanasaki
and
Y.
Isono
,
Phys. Rev. E
85
,
051134
(
2012
).
10.
I.
Hanasaki
and
S.
Kawano
,
J. Phys.: Condens. Matter
25
,
465103
(
2013
).
11.
S.
Uehara
,
I.
Hanasaki
,
Y.
Arai
,
T.
Nagai
, and
S.
Kawano
,
Micro Nano Lett.
9
,
257
(
2014
).
12.
I.
Hanasaki
,
S.
Uehara
, and
S.
Kawano
,
Procedia Comput. Sci.
29
,
281
(
2014
).
13.
I.
Hanasaki
,
T.
Yonebayashi
, and
S.
Kawano
,
Phys. Rev. E
79
,
046307
(
2009
).
14.
I.
Hanasaki
,
Y.
Isono
,
B.
Zheng
,
Y.
Uraoka
, and
I.
Yamashita
,
Jpn. J. Appl. Phys.
50
,
065201
(
2011
).
15.
M. J.
Nuevo
,
J. J.
Morales
, and
D. M.
Heyes
,
Phys. Rev. E
51
,
2026
(
1995
).
16.
F.
Ould-Kaddour
and
D.
Levesque
,
Phys. Rev. E
63
,
011205
(
2000
).
17.
S. M.
Ali
,
A.
Samanta
, and
S. K.
Ghosh
,
J. Chem. Phys.
114
,
10419
(
2001
).
18.
S. M.
Ali
,
A.
Samanta
, and
S. K.
Ghosh
,
Chem. Phys. Lett.
357
,
217
(
2002
).
19.
J. R.
Schmidt
and
J. L.
Skinner
,
J. Chem. Phys.
119
,
8062
(
2003
).
20.
M.
Cappelezzo
,
C. A.
Capellari
,
S. H.
Pezzin
, and
L. A. F.
Coelho
,
J. Chem. Phys.
126
,
224516
(
2007
).
21.
F.
Ould-Kaddour
and
D.
Levesque
,
J. Chem. Phys.
127
,
154514
(
2007
).
23.
J. D.
Weeks
,
D.
Chandler
, and
H. C.
Anderson
,
J. Chem. Phys.
54
,
5237
(
1971
).
24.
S. M.
Ali
,
A. S. N.
Choudhury
, and
S. K.
Ghosh
,
Phys. Rev. E
74
,
051201
(
2006
).
25.
R. K.
Murarka
,
S.
Bhattacharyya
, and
B.
Bagchi
,
J. Chem. Phys.
117
,
10730
(
2002
).
26.
B. A.
Kowert
,
K. T.
Sobush
,
N. C.
Dang
,
L. G.
Seele
III
,
C. F.
Fuqua
, and
C. L.
Mapes
,
Chem. Phys. Lett.
353
,
95
(
2002
).
27.
G. L.
Pollak
,
R. P.
Kennan
,
J. F.
Himm
, and
D. R.
Stump
,
J. Chem. Phys.
92
,
625
(
1990
).
28.
G. L.
Pollack
and
J. J.
Enyeart
,
Phys. Rev. A
31
,
980
(
1985
).
29.
B. B.
Laird
and
J. L.
Skinner
,
J. Chem. Phys.
90
,
3274
(
1989
).
30.
L. F.
Rull
,
E.
de Miguel
,
J. J.
Morales
, and
M. J.
Nuevo
,
Phys. Rev. A
40
,
5856
(
1989
).
31.
D. M.
Heyes
,
M. J.
Nuevo
,
J. J.
Morales
, and
A. C.
Bránka
,
J. Phys.: Condens. Matter
10
,
10159
(
1998
).
32.
J.
Liu
,
D.
Cao
, and
L.
Zhang
,
J. Phys. Chem. C
112
,
6653
(
2008
).
33.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
,
J. Chem. Phys.
79
,
926
(
1983
).
34.
I.-C.
Ye
and
G.
Hummer
,
J. Phys. Chem. B
108
,
15873
(
2004
).
35.
H.
Lee
,
R. M.
Venable
,
A. D.
MacKerell
, Jr.
, and
R. W.
Pastor
,
Biophys. J.
95
,
1590
(
2008
).
36.
I.
Hanasaki
,
H.
Takahashi
,
G.
Sazaki
,
K.
Nakajima
, and
S.
Kawano
,
J. Phys. D: Appl. Phys.
41
,
095301
(
2008
).
37.
M.
Tuckerman
,
B. J.
Berne
, and
G. J.
Martyna
,
J. Chem. Phys.
97
,
1990
(
1992
).
38.
J. C.
Phillips
,
R.
Braun
,
W.
Wang
,
J.
Gumbart
,
E.
Tajkhorshid
,
E.
Villa
,
C.
Chipot
,
R. D.
Skeel
,
L.
Kalé
, and
K.
Schulten
,
J. Comput. Chem.
26
,
1781
(
2005
).
39.
T.
Darden
,
D.
York
, and
L.
Pedersen
,
J. Chem. Phys.
98
,
10089
(
1993
).
40.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W. F.
van Gunsteren
,
A.
DiNola
, and
J. R.
Haak
,
J. Chem. Phys.
81
,
3684
(
1984
).
41.
C. P.
Lowe
,
Europhys. Lett.
47
,
145
(
1999
).
42.
E. A.
Koopman
and
C. P.
Lowe
,
J. Chem. Phys.
124
,
204103
(
2006
).
43.
H.-J.
Qian
,
C. C.
Liew
, and
F.
Müller-Plathe
,
Phys. Chem. Chem. Phys.
11
,
1962
(
2009
).
44.
I.
Hanasaki
and
A.
Nakatani
,
J. Chem. Phys.
124
,
144708
(
2006
).
45.
I.
Hanasaki
and
A.
Nakatani
,
J. Chem. Phys.
124
,
174714
(
2006
).
46.
I.
Hanasaki
,
A.
Nakamura
,
T.
Yonebayashi
, and
S.
Kawano
,
J. Phys.: Condens. Matter
20
,
015213
(
2008
).
47.
P.
Español
and
H. C.
Öttinger
,
Z. Phys. B
90
,
377
(
1993
).
48.
G. A.
Voth
,
Coarse-Graining of Condensed Phase and Biomolecular Systems
(
CRC Press
,
2009
).
49.
M.
Praprotnik
,
L. D.
Site
, and
K.
Kremmer
,
Annu. Rev. Phys. Chem.
59
,
545
(
2008
).
50.
S.
Izvekov
and
G. A.
Voth
,
J. Chem. Phys
125
,
151101
(
2006
).
51.
P.
Mark
and
L.
Nilsson
,
J. Phys. Chem. A
105
,
9954
(
2001
).
52.
M.
Agarwal
,
M.
Singh
,
R.
Sharma
,
M. P.
Alam
, and
C.
Chakravarty
,
J. Phys. Chem. B
114
,
6995
(
2010
).
53.
S. E.
Feller
,
G.
Gawrisch
, and
A. D.
MacKerell
, Jr.
,
J. Am. Chem. Soc.
124
,
318
326
(
2002
).
You do not currently have access to this content.