We describe the calculation of Raman spectra for periodic systems via ab initio molecular dynamics (AIMD) utilizing the Gaussian and plane wave method in the program package CP2K. The electric-dipole–electric-dipole polarizability tensor has been implemented for an arbitrary shape of the simulation cell. In addition, a computationally efficient approach for its decomposition into local contributions is presented. As an example for the application of computational Raman spectroscopy to liquids, the Raman spectra of S-methyloxirane in the liquid phase have been calculated together with Raman spectra obtained from static calculations employing the double-harmonic approximation. The comparison to experimental data illustrates that a very good agreement between experiment and simulated spectra can be obtained employing AIMD, which takes into account anharmonicities and dynamical effects at ambient conditions.

1.
E. B.
Wilson
 Jr.
,
J. C.
Decius
, and
P. C.
Cross
,
Molecular Vibrations
(
McGraw-Hill
,
New York
,
1955
).
2.
J.
Neugebauer
,
M.
Reiher
,
C.
Kind
, and
B. A.
Hess
,
J. Comput. Chem.
23
,
895
(
2002
).
3.
D. A.
Long
,
The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules
(
John Wiley & Sons
,
New York
,
2002
).
4.
M.-P.
Gaigeot
,
Phys. Chem. Chem. Phys.
12
,
3336
(
2010
).
5.
S.
Luber
and
M.
Reiher
,
J. Phys. Chem. A
113
,
8268
(
2009
).
6.
K. H.
Hopmann
,
K.
Ruud
,
M.
Pecul
,
A.
Kudelski
,
M.
Dračinský
, and
P.
Bouř
,
J. Phys. Chem. B
115
,
4128
(
2011
).
7.
M.
Kaminski
,
A.
Kudelski
, and
M.
Pecul
,
J. Phys. Chem. B
116
,
4976
(
2012
).
8.
S.
Luber
,
J. Phys. Chem. A
117
,
2760
(
2013
).
9.
A.
Miani
,
M. S.
Helfand
, and
S.
Raugei
,
J. Chem. Theory Comput.
5
,
2158
(
2009
).
10.
J. R.
Cheeseman
,
M. S.
Shaik
,
P. L. A.
Popelier
, and
E. W.
Blanch
,
J. Am. Chem. Soc.
133
,
4991
(
2011
).
11.
J.
Hudevoca
,
K. H.
Hopmann
, and
P.
Bouř
,
J. Phys. Chem. B
116
,
336
(
2012
).
12.
J.
Kessler
,
M.
Dračinsky
, and
P.
Bouř
,
J. Comput. Chem.
34
,
366
(
2013
).
13.
R.
Car
and
M.
Parrinello
,
Phys. Rev. Lett.
55
,
2471
(
1985
).
14.
D.
Marx
and
J.
Hutter
,
Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods
(
Cambridge University Press
,
Cambridge
,
2009
).
15.
A.
Putrino
and
M.
Parrinello
,
Phys. Rev. Lett.
88
,
176401
(
2002
).
16.
M.
Pagliai
,
C.
Cavazzoni
,
G.
Cardini
,
G.
Erbacci
,
M.
Parrinello
, and
V.
Schettino
,
J. Chem. Phys.
128
,
224514
(
2008
).
17.
R. D.
King-Smith
and
R.
Resta
,
Phys. Rev. B
47
,
1651
(
1993
).
18.
R.
Resta
,
Europhys. Lett.
22
,
133
(
1993
).
19.
R.
Resta
,
Rev. Mod. Phys.
66
,
899
(
1994
).
20.
Q.
Wan
,
L.
Spanu
,
G. A.
Galli
, and
F.
Gygi
,
J. Chem. Theory Comput.
9
,
4124
(
2013
).
21.
M.
Thomas
,
M.
Brehm
,
R.
Fligg
,
P.
Vöhringer
, and
B.
Kirchner
,
Phys. Chem. Chem. Phys.
15
,
6608
(
2013
).
22.
N.
Marzari
and
D.
Vanderbilt
,
Phys. Rev. B
56
,
12847
(
1997
).
23.
P. L.
Silvestrelli
and
M.
Parrinello
,
Phys. Rev. Lett.
82
,
3308
(
1999
).
24.
P. L.
Silvestrelli
and
M.
Parrinello
,
J. Chem. Phys.
111
,
3572
(
1999
).
25.
B.
Kirchner
and
J.
Hutter
,
J. Chem. Phys.
121
,
5133
(
2004
).
26.
M.
Salanne
,
R.
Vuilleumier
,
P. A.
Madden
,
C.
Simon
,
P.
Turq
, and
B.
Guillot
,
J. Phys.: Condens. Matter
20
,
494207
(
2008
).
27.
X.
Gonze
and
J.-P.
Vigneron
,
Phys. Rev. B
39
,
13120
(
1989
).
28.
X.
Gonze
,
Phys. Rev. A
52
,
1096
(
1995
).
29.
A.
Putrino
,
D.
Sebastiani
, and
M.
Parrinello
,
J. Chem. Phys.
113
,
7102
(
2000
).
30.
R. W.
Nunes
and
X.
Gonze
,
Phys. Rev. B
63
,
155107
(
2001
).
31.
V.
Weber
,
M.
Iannuzzi
,
S.
Giani
,
J.
Hutter
,
R.
Declerck
, and
M.
Waroquier
,
J. Chem. Phys.
131
,
014106
(
2009
).
32.
J.
VandeVondele
,
M.
Krack
,
F.
Mohamed
,
M.
Parrinello
,
T.
Chassaing
, and
J.
Hutter
,
Comput. Phys. Commun.
167
,
103
(
2005
).
33.
G.
Placzek
, “
Rayleigh-Streuung und Raman-Effekt
,” in
Handbuch der Radiologie
, edited by
E.
Marx
(
Akademische Verlagsgesellschaft
,
Leipzig
,
1934
). Vol.
6
, p.
205
.
34.
P. L.
Polavarapu
,
L.
Hecht
, and
L. D.
Barron
,
J. Phys. Chem.
97
,
1793
(
1993
).
35.
R.
Resta
,
Phys. Rev. Lett.
80
,
1800
(
1998
).
36.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
1133
(
1965
).
37.
R. M.
Dreizler
and
E. K. U.
Gross
,
Density Functional Theory — An Approach to the Quantum Many-Body Problem
(
Springer-Verlag
,
Berlin
,
1990
).
38.
R. G.
Parr
and
W.
Yang
,
Density-Functional Theory of Atoms and Molecules
(
Oxford University Press
,
Oxford
,
1989
).
39.
H.
Eschrig
,
The Fundamentals of Density Functional Theory
, 2nd ed. (
Gutenbergplatz
,
Leipzig
,
2003
).
40.
K.
Capelle
,
Braz. J. Phys.
36
,
1318
(
2006
).
41.
R. M.
Martin
,
Electronic Structure — Basic Theory and Practical Methods
(
Cambridge University Press
,
Cambridge
,
2004
).
42.
I. N.
Levine
,
Quantum Chemistry
, 5th ed. (
Prentice Hall
,
Upper Saddle River
,
2000
).
43.
E. J.
Baerends
,
Theor. Chem. Acc.
103
,
265
(
2000
).
44.
R. G.
Gordon
,
J. Chem. Phys.
42
,
3658
(
1965
).
45.
D. A.
McQuarrie
,
Statistical Mechanics
(
University Science Books
,
Sausalito, CA
,
2000
).
46.
R.
Ramírez
,
T.
López-Ciudad
,
P.
Kumar
, and
D.
Marx
,
J. Chem. Phys.
121
,
3973
(
2004
).
47.
CP2K developers group, URL: http://www.cp2k.org.
48.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
49.
J. P.
Perdew
,
Phys. Rev. B
33
,
8822
(
1986
).
50.
J.
Neugebauer
and
B. A.
Hess
,
J. Chem. Phys.
118
,
7215
(
2003
).
51.
M.
Reiher
,
G.
Brehm
, and
S.
Schneider
,
J. Phys. Chem. A
108
,
734
(
2004
).
52.
S.
Luber
,
C.
Herrmann
, and
M.
Reiher
,
J. Phys. Chem. B
112
,
2218
(
2008
).
53.
S.
Luber
and
M.
Reiher
,
Chem. Phys.
346
,
212
(
2008
).
54.
C. R.
Jacob
,
S.
Luber
, and
M.
Reiher
,
ChemPhysChem
9
,
2177
(
2008
).
55.
C. R.
Jacob
,
S.
Luber
, and
M.
Reiher
,
J. Phys. Chem. B
113
,
6558
(
2009
).
56.
C. R.
Jacob
,
S.
Luber
, and
M.
Reiher
,
Chem.-Eur. J.
15
,
13491
(
2009
).
57.
S.
Luber
,
J.
Neugebauer
, and
M.
Reiher
,
J. Chem. Phys.
130
,
064105
(
2009
).
58.
S.
Luber
and
M.
Reiher
,
ChemPhysChem
10
,
2049
(
2009
).
59.
S.
Luber
and
M.
Reiher
,
J. Phys. Chem. B
114
,
1057
(
2010
).
60.
O.
Mohammed
,
S.
Luber
,
V. S.
Batista
, and
E. T. J.
Nibbering
,
J. Phys. Chem. A
115
,
7550
(
2011
).
61.
T.
Weymuth
,
M. P.
Haag
,
K.
Kiewisch
,
S.
Luber
,
S.
Schenk
,
C. R.
Jacob
,
C.
Herrmann
,
J.
Neugebauer
, and
M.
Reiher
,
J. Comput. Chem.
33
,
2186
(
2012
).
62.
S.
Luber
,
K.
Adamczyk
,
E. T. J.
Nibbering
, and
V. S.
Batista
,
J. Phys. Chem. A
117
,
5269
(
2013
).
63.
B.
Varnholt
,
P.
Oulevey
,
S.
Luber
,
C.
Kumara
,
A.
Dass
, and
T.
Bürgi
,
J. Phys. Chem. C
118
,
9604
(
2014
).
64.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
65.
P. L.
Silvestrelli
,
M.
Bernasconi
, and
M.
Parrinello
,
Chem. Phys. Lett.
277
,
478
(
1997
).
66.
M.-P.
Gaigeot
and
M.
Sprik
,
J. Phys. Chem. B
107
,
10344
(
2003
).
67.
J.-W.
Handgraaf
,
E. J.
Meijer
, and
M.-P.
Gaigeot
,
J. Chem. Phys.
21
,
10111
(
2004
).
68.
M.-P.
Gaigeot
,
R.
Vuilleumier
,
M.
Sprik
, and
D.
Borgis
,
J. Chem. Theory Comput.
1
,
772
(
2005
).
69.
D. C.
Marinica
,
G.
Greǵoir
,
C.
Desfrançois
,
J. P.
Schermann
,
D.
Borgis
, and
M. P.
Gaigeot
,
J. Phys. Chem. A
110
,
8802
(
2006
).
70.
M.-P.
Gaigeot
,
Phys. Chem. Chem. Phys.
12
,
10198
(
2010
).
71.
A.
Cimas
,
T. D.
Vaden
,
T. S. J. A.
de Boer
,
L. C.
Snoek
, and
M.-P.
Gaigeot
,
J. Chem. Theory Comput.
5
,
1068
(
2009
).
72.
A.
Cimas
,
P.
Maitre
,
G.
Ohanessian
, and
M.-P.
Gaigeot
,
J. Chem. Theory Comput.
5
,
2388
(
2009
).
73.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
74.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
78
,
1396
(
1997
).
75.
S.
Goedecker
,
M.
Teter
, and
J.
Hutter
,
Phys. Rev. B
54
,
1703
(
1996
).
76.
C.
Hartwigsen
,
S.
Goedecker
, and
J.
Hutter
,
Phys. Rev. B
58
,
3641
(
1998
).
77.
M.
Krack
,
Theor. Chem. Acc.
114
,
145
(
2005
).
78.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
,
J. Chem. Phys.
132
,
154104
(
2010
).
79.
D. R.
Lide
,
CRC Handbook of Chemistry and Physics
, 90th ed. (
CRC Press
,
Cleveland, Ohio
,
2009
).
80.
S.
Nosé
,
J. Chem. Phys.
81
,
511
(
1984
).
81.
S.
Nosé
,
Mol. Phys.
52
,
255
(
1984
).
82.
M.
Brehm
and
B.
Kirchner
,
J. Chem. Inf. Model.
51
,
2007
(
2011
).
83.
R.
Ahlrichs
,
M.
Bär
,
M.
Häser
,
H.
Horn
, and
C.
Kölmel
,
Chem. Phys. Lett.
162
,
165
(
1989
).
84.
W. G.
Bickley
,
Math. Gaz.
25
,
19
(
1941
).
85.
F.
Weigend
and
R.
Ahlrichs
,
Phys. Chem. Chem. Phys.
7
,
3297
(
2005
).
86.
F.
Weigend
,
Phys. Chem. Chem. Phys.
8
,
1057
(
2006
).
87.
M. E.
Casida
, “
Time-dependent density functional response theory for molecules
,” in
Recent Advances in Density Functional Methods
, edited by
D. P.
Chong
(
World Scientific
,
Singapore
,
1995
), Vol.
1
, pp.
155
192
.
88.
R.
Bauernschmitt
,
M.
Häser
,
O.
Treutler
, and
R.
Ahlrichs
,
Chem. Phys. Lett.
264
,
573
(
1997
).
89.
L. D.
Barron
and
P. L.
Polavarapu
,
Mol. Phys.
65
,
659
(
1988
).
90.
M.
Carnell
,
S.
Peyerimhoff
,
A.
Breest
,
K.
Gödderz
,
P.
Ochmann
, and
J.
Hermes
,
Chem. Phys. Lett.
180
,
477
(
1991
).
91.
P. K.
Bose
,
P. L.
Polavarapu
,
L. D.
Barron
, and
L. D.
Hecht
,
J. Phys. Chem.
94
,
1734
(
1990
).
92.
M. C.
Tam
,
N. J.
Russ
, and
T. D.
Crawford
,
J. Chem. Phys.
121
(
8
),
3550
3557
(
2004
).
93.
M.
Reiher
,
V.
Liégeois
, and
K.
Ruud
,
J. Phys. Chem. A
109
,
7567
(
2005
).
94.
J.
Šebestík
and
P.
Bouř
,
J. Phys. Chem. Lett.
2
,
498
(
2011
).
95.
J.
Bloino
and
V.
Barone
,
J. Chem. Phys.
136
,
124108
(
2012
).
96.
See supplementary material at http://dx.doi.org/10.1063/1.4894425 for the spectra.
97.
M.
Sprik
,
J.
Hutter
, and
M.
Parrinello
,
J. Chem. Phys.
105
,
1142
(
1996
).
98.
C.
Adamo
and
V.
Barone
,
J. Chem. Phys.
110
,
6158
(
1999
).
99.
C.
Zhang
,
D.
Donadio
,
F.
Gygi
, and
G.
Galli
,
J. Chem. Theory Comput.
7
,
1443
(
2011
).

Supplementary Material

You do not currently have access to this content.