In this paper we discuss a new formalism for producing an analytic coupled-cluster (CC) Green's function for an N-electron system by shifting the poles of similarity transformed Hamiltonians represented in N − 1 and N + 1 electron Hilbert spaces. Simple criteria are derived for the states in N − 1 and N + 1 electron spaces that are then corrected in the spectral resolution of the corresponding matrix representations of the similarity transformed Hamiltonian. The accurate description of excited state processes within a Green's function formalism would be of significant importance to a number of scientific communities ranging from physics and chemistry to engineering and the biological sciences. This is because the Green's function methodology provides a direct path for not only calculating properties whose underlying origins come from coupled many-body interactions but also provides a straightforward path for calculating electron transport, response, and correlation functions that allows for a direct link with experiment. As a special case of this general formulation, we discuss the application of this technique for Green's function defined by the CC with singles and doubles representation of the ground-state wave function.

1.
A. J.
Heeger
,
Rev. Mod. Phys.
73
,
681
(
2001
).
2.
S.
Barlow
,
Q.
Zhang
,
B.
Kaafarani
,
C.
Risko
,
F.
Amy
,
C.
Chan
,
B.
Domercq
,
Z.
Starikova
,
M.
Antipin
,
T.
Timofeeva
,
B.
Kippelen
,
J.-L.
Brédas
,
A.
Kahn
, and
S.
Marder
,
Chem. Eur. J.
13
,
3537
(
2007
).
3.
S.
Günes
,
H.
Neugebauer
, and
N. S.
Sariciftci
,
Chem. Rev.
107
,
1324
(
2007
).
4.
X.
Zhan
,
C.
Risko
,
F.
Amy
,
C.
Chan
,
W.
Zhao
,
S.
Barlow
,
A.
Kahn
,
J.-L.
Brédas
, and
S. R.
Marder
,
J. Am. Chem. Soc.
127
,
9021
(
2005
).
5.
M. D.
Perez
,
C.
Borek
,
S. R.
Forrest
, and
M. E.
Thompson
,
J. Am. Chem. Soc.
131
,
9281
(
2009
).
6.
J.-L.
Brédas
,
J. E.
Norton
,
J.
Cornil
, and
V.
Coropceanu
,
Acc. Chem. Res.
42
,
1691
(
2009
).
7.
J. L.
Delgado
,
E.
Espildora
,
M.
Liedtke
,
A.
Sperlich
,
D.
Rauh
,
A.
Baumann
,
C.
Deibel
,
V.
Dyakonov
, and
N.
Martin
,
Chem. Eur. J.
15
,
13474
(
2009
).
8.
S.
Baroni
,
R.
Resta
,
A.
Baldereschi
, and
M.
Peressi
, in
Spectroscopy of Semiconductor Microstructures
,
NATO ASI Series
Vol.
206
, edited by
G.
Fasol
,
A.
Fasolino
and
P.
Lugli
(
Springer
,
New York
,
1989
), pp.
251
271
.
9.
W.
Mönch
,
Semiconductor Surfaces and Interfaces
(
Springer
,
Berlin
,
2001
), Vol.
26
.
10.
S. M.
Sze
and
K. K.
Ng
,
Physics of Semiconductor Devices
(
John Wiley and Sons
,
New Jersey
,
2006
).
11.
S.
Okamoto
and
T. A.
Maier
,
Phys. Rev. Lett.
101
,
156401
(
2008
).
12.
H.
Luo
,
Z.
Yamani
,
Y.
Chen
,
X.
Lu
,
M.
Wang
,
S.
Li
,
T. A.
Maier
,
S.
Danilkin
,
D. T.
Adroja
, and
P.
Dai
,
Phys. Rev. B
86
,
024508
(
2012
).
13.
G.
Kotliar
,
S. Y.
Savrasov
,
K.
Haule
,
V. S.
Oudovenko
,
O.
Parcollet
, and
C. A.
Marianetti
,
Rev. Mod. Phys.
78
,
865
(
2006
).
14.
D.
Johnson
,
A.
Smirnov
,
J.
Staunton
,
F.
Pinski
, and
W.
Shelton
,
Phys. Rev. B
62
,
R11917
(
2000
).
15.
D.
Biava
,
S.
Ghosh
,
D.
Johnson
,
W.
Shelton
, and
A.
Smirnov
,
Phys. Rev. B
72
,
113105
(
2005
).
16.
G.
Stocks
,
D.
Nicholson
,
W.
Shelton
,
B.
Györffy
,
F.
Pinski
,
D.
Johnson
,
J.
Staunton
,
B.
Ginatempo
,
P.
Turchi
, and
M.
Sluiter
,
Statics and Dynamics of Alloy Phase Transformations
(
Springer
,
New York
,
1994
), pp.
305
359
.
17.
B.
Györffy
,
A.
Barbieri
,
J.
Staunton
,
W.
Shelton
, and
G.
Stocks
,
Physica B
172
,
35
(
1991
).
18.
D. D.
Johnson
,
D. M.
Nicholson
,
F. J.
Pinski
,
B. L.
Györffy
, and
G. M.
Stocks
,
Phys. Rev. B
41
,
9701
(
1990
).
19.
A.
Nitzan
and
M. A.
Ratner
,
Science
300
,
1384
(
2003
).
20.
M. Di
Ventra
,
S.
Pantelides
, and
N.
Lang
,
Phys. Rev. Lett.
84
,
979
(
2000
).
21.
R.
Brown
,
D.
Nicholson
,
W.
Butler
,
X.-G.
Zhang
,
W.
Shelton
,
T.
Schulthess
, and
J.
MacLaren
,
Phys. Rev. B
58
,
11146
(
1998
).
22.
M. B.
Nardelli
,
Phys. Rev. B
60
,
7828
(
1999
).
23.
S.
Ulstrup
,
T.
Frederiksen
, and
M.
Brandbyge
,
Phys. Rev. B
86
,
245417
(
2012
).
24.
J. B.
Staunton
,
D. D.
Johnson
, and
F. J.
Pinski
,
Phys. Rev. B
50
,
1450
(
1994
).
25.
J. D.
Althoff
,
D. D.
Johnson
, and
F. J.
Pinski
,
Phys. Rev. Lett.
74
,
138
(
1995
).
26.
J. B.
Staunton
,
J.
Poulter
,
B.
Ginatempo
,
E.
Bruno
, and
D. D.
Johnson
,
Phys. Rev. Lett.
82
,
3340
(
1999
).
27.
R.
Godby
,
M.
Schlüter
, and
L.
Sham
,
Phys. Rev. Lett.
56
,
2415
(
1986
).
28.
R.
Gaudoin
and
K.
Burke
,
Phys. Rev. Lett.
93
,
173001
(
2004
).
29.
G.
Onida
,
L.
Reining
, and
A.
Rubio
,
Rev. Mod. Phys.
74
,
601
(
2002
).
30.
L.
Hedin
,
Phys. Rev.
139
,
A796
(
1965
).
31.
J. J.
Rehr
and
R.
Albers
,
Rev. Mod. Phys.
72
,
621
(
2000
).
32.
T.
Kotani
and
M.
Van Schilfgaarde
,
Solid State Commun.
121
,
461
(
2002
).
33.
E.
Müller-Hartmann
,
Z. Phys. B Con. Mat.
74
,
507
(
1989
).
34.
W.
Metzner
and
D.
Vollhardt
,
Phys. Rev. Lett.
62
,
324
(
1989
).
35.
A.
Georges
,
G.
Kotliar
,
W.
Krauth
, and
M. J.
Rozenberg
,
Rev. Mod. Phys.
68
,
13
(
1996
).
36.
K.
Kowalski
,
J. R.
Hammond
, and
W. A.
de Jong
,
J. Chem. Phys.
127
,
164105
(
2007
).
37.
H.
Monkhorst
,
Int. J. Quantum Chem. Symp.
12
(
S11
),
421
(
1977
).
38.
H.
Sekino
and
R.
Bartlett
,
Int. J. Quantum Chem. Symp.
26
(
S18
),
255
(
1984
).
39.
P.
Rozyczko
,
S.
Perera
,
M.
Nooijen
, and
R.
Bartlett
,
J. Chem. Phys.
107
,
6736
(
1997
).
40.
M.
Nooijen
and
J.
Snijders
,
Int. J. Quantum Chem.
47
,
3
(
1993
).
41.
A.
Kondo
,
P.
Piecuch
, and
J.
Paldus
,
J. Chem. Phys.
104
,
8566
(
1996
).
42.
H.
Koch
and
P.
Jørgensen
,
J. Chem. Phys.
93
,
3333
(
1990
).
43.
H.
Koch
,
O.
Christiansen
,
P.
Jørgensen
,
A.
deMeras
, and
T.
Helgaker
,
J. Chem. Phys.
106
,
1808
(
1997
).
44.
H.
Koch
and
R.
Harrison
,
J. Chem. Phys.
95
,
7479
(
1991
).
45.
O.
Christiansen
,
P.
Jørgensen
, and
C.
Hättig
,
Int. J. Quantum Chem.
68
,
1
(
1998
).
46.
T.
Helgaker
,
S.
Coriani
,
P.
Jørgensen
,
K.
Kristensen
,
J.
Olsen
, and
K.
Ruud
,
Chem. Rev.
112
,
543
(
2012
).
47.
D.
Comeau
and
R.
Bartlett
,
Chem. Phys. Lett.
207
,
414
(
1993
).
48.
J.
Geertsen
,
M.
Rittby
, and
R.
Bartlett
,
Chem. Phys. Lett.
164
,
57
(
1989
).
49.
J. F.
Stanton
and
R. J.
Bartlett
,
J. Chem. Phys.
98
,
7029
(
1993
).
50.
S.
Hirata
,
J. Chem. Phys.
121
,
51
(
2004
).
51.
K.
Kowalski
and
P.
Piecuch
,
Chem. Phys. Lett.
347
,
237
(
2001
).
52.
A.
Krylov
,
Chem. Phys. Lett.
350
,
522
(
2001
).
53.
A.
Krylov
,
Chem. Phys. Lett.
338
,
375
(
2001
).
54.
M.
Nooijen
,
J. Chem. Phys.
104
,
2638
(
1996
).
55.
M.
Nooijen
and
R.
Bartlett
,
J. Chem. Phys.
106
,
6449
(
1997
).
56.
M.
Nooijen
and
R.
Bartlett
,
J. Chem. Phys.
107
,
6812
(
1997
).
57.
M.
Nooijen
and
V.
Lotrich
,
J. Chem. Phys.
113
,
494
(
2000
).
58.
J.
Linderberg
and
Y.
Öhrn
,
Proc. R. Soc. London A
285
,
445
(
1965
).
59.
Y.
Öhrn
and
J.
Linderberg
,
Phys. Rev.
139
,
A1063
(
1965
).
60.
J.
Linderberg
and
Y.
Öhrn
,
Propagators in Quantum Chemistry
(
Academic Press
,
London
,
1973
).
61.
J.
Linderberg
and
Y.
Ohrn
,
Int. J. Quantum Chem.
12
,
161
(
1977
).
62.
Y.
Öhrn
and
J.
Linderberg
,
Mol. Phys.
108
,
2899
(
2010
).
63.
L.
Cederbaum
,
J. Phys. B: At. Mol. Opt.
8
,
290
(
1975
).
64.
J.
Schirmer
,
L. S.
Cederbaum
, and
O.
Walter
,
Phys. Rev. A
28
,
1237
(
1983
).
65.
W.
von Niessen
,
J.
Schirmer
, and
L. S.
Cederbaum
,
Comput. Phys. Rep.
1
,
57
(
1984
).
66.
H.
Weikert
,
H.
Meyer
,
L.
Cederbaum
, and
F.
Tarantelli
,
J. Chem. Phys.
104
,
7122
(
1996
).
67.
J.
Ortiz
,
J. Chem. Phys.
89
,
6348
(
1988
).
68.
J.
Ortiz
,
J. Chem. Phys.
104
,
7599
(
1996
).
69.
J. V.
Ortiz
,
Wiley Interdiscip. Rev. Comput. Mol. Sci.
3
,
123
(
2013
).
70.
A.
Tarantelli
and
L.
Cederbaum
,
Phys. Rev. A
45
,
2790
(
1992
).
71.
D.
Zgid
and
G. K.-L.
Chan
,
J. Chem. Phys.
134
,
094115
(
2011
).
72.
D.
Zgid
,
E.
Gull
, and
G. K.-L.
Chan
,
Phys. Rev. B
86
,
165128
(
2012
).
73.
F.
Coester
,
Nucl. Phys.
7
,
421
(
1958
).
74.
F.
Coester
and
H.
Kümmel
,
Nucl. Phys.
17
,
477
(
1960
).
75.
J.
Čížek
,
J. Chem. Phys.
45
,
4256
(
1966
).
76.
J.
Paldus
,
I.
Shavitt
, and
J.
Čížek
,
Phys. Rev. A
5
,
50
(
1972
).
77.
G.
Purvis
and
R.
Bartlett
,
J. Chem. Phys.
76
,
1910
(
1982
).
78.
G.
Scuseria
and
H.
Schaefer
,
Chem. Phys. Lett.
152
,
382
(
1988
).
79.
S.
Kucharski
and
R.
Bartlett
,
Theor. Chim. Acta
80
,
387
(
1991
).
80.
M.
Urban
,
J.
Noga
,
S.
Cole
, and
R.
Bartlett
,
J. Chem. Phys.
83
,
4041
(
1985
).
81.
K.
Raghavachari
,
G.
Trucks
,
J.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
82.
R. J.
Bartlett
and
M.
Musial
,
Rev. Mod. Phys.
79
,
291
(
2007
).
83.
M.
Nooijen
and
J. G.
Snijders
,
Int. J. Quantum Chem. Symp.
44
(
S26
),
55
(
1992
).
84.
M.
Nooijen
and
J.
Snijders
,
Int. J. Quantum Chem.
48
,
15
(
1993
).
85.
M.
Nooijen
and
J.
Snijders
,
J. Chem. Phys.
102
,
1681
(
1995
).
86.
L.
Meissner
and
R. J.
Bartlett
,
Int. J. Quantum Chem. Symp.
48
(
S27
),
67
(
1993
).
87.
J.
Arponen
,
Ann. Phys.
151
,
311
(
1983
).
88.
J.
Stanton
and
R.
Bartlett
,
J. Chem. Phys.
99
,
5178
(
1993
).
89.
M.
Nooijen
and
R. J.
Bartlett
,
J. Chem. Phys.
102
,
3629
(
1995
).
90.
J.
Stanton
and
J.
Gauss
,
J. Chem. Phys.
103
,
1064
(
1995
).
91.
K.
Kowalski
and
P.
Piecuch
,
J. Chem. Phys.
120
,
1715
(
2004
).
92.
M.
Musiał
,
S. A.
Kucharski
, and
R. J.
Bartlett
,
J. Chem. Phys.
118
,
1128
(
2003
).
93.
M.
Musiał
and
R. J.
Bartlett
,
J. Chem. Phys.
119
,
1901
(
2003
).
94.
J. R.
Gour
and
P.
Piecuch
,
J. Chem. Phys.
125
,
234107
(
2006
).
95.
J.
Stanton
and
J.
Gauss
,
Theor. Chim. Acta
93
,
303
(
1996
).
96.
J.
Stanton
,
Chem. Phys. Lett.
281
,
130
(
1997
).
97.
T.
Crawford
and
J.
Stanton
,
Int. J. Quantum Chem.
70
,
601
(
1998
).
98.
S.
Kucharski
and
R.
Bartlett
,
J. Chem. Phys.
108
,
5243
(
1998
).
99.
S.
Gwaltney
and
M.
Head-Gordon
,
Chem. Phys. Lett.
323
,
21
(
2000
).
100.
S.
Gwaltney
,
C.
Sherrill
,
M.
Head-Gordon
, and
A.
Krylov
,
J. Chem. Phys.
113
,
3548
(
2000
).
101.
S.
Gwaltney
,
E.
Byrd
,
T.
Van Voorhis
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
353
,
359
(
2002
).
102.
S.
Hirata
,
M.
Nooijen
,
I.
Grabowski
, and
R.
Bartlett
,
J. Chem. Phys.
115
,
3967
(
2001
).
103.
Y.
Bomble
,
J.
Stanton
,
M.
Kallày
, and
J.
Gauss
,
J. Chem. Phys.
123
,
054101
(
2005
).
104.
M.
Kallày
and
J.
Gauss
,
J. Chem. Phys.
123
,
214105
(
2005
).
105.
A. G.
Taube
and
R. J.
Bartlett
,
J. Chem. Phys.
128
,
044110
(
2008
).
106.
A. G.
Taube
and
R. J.
Bartlett
,
J. Chem. Phys.
128
,
044111
(
2008
).
107.
K.
Kowalski
and
P.
Piecuch
,
J. Chem. Phys.
113
,
18
(
2000
).
108.
P.
Piecuch
and
M.
Włoch
,
J. Chem. Phys.
123
,
224105
(
2005
).
109.
J.
Watts
and
R.
Bartlett
,
Chem. Phys. Lett.
258
,
581
(
1996
).
110.
J.
Watts
and
R.
Bartlett
,
Chem. Phys. Lett.
233
,
81
(
1995
).
111.
O.
Christiansen
,
H.
Koch
, and
F.
Jørgensen
,
J. Chem. Phys.
105
,
1451
(
1996
).
112.
S.
Hirata
,
M.
Nooijen
,
I.
Grabowski
, and
R.
Bartlett
,
J. Chem. Phys.
114
,
3919
(
2001
).
113.
K.
Kowalski
and
P.
Piecuch
,
J. Chem. Phys.
115
,
2966
(
2001
).
114.
P.
Piecuch
,
J. R.
Gour
, and
M.
Włoch
,
Int. J. Quantum Chem.
109
,
3268
(
2009
).
115.
J.
Shen
and
P.
Piecuch
,
Chem. Phys.
401
,
180
(
2012
).
116.
P. U.
Manohar
and
A. I.
Krylov
,
J. Chem. Phys.
129
,
194105
(
2008
).
117.
T.
Shiozaki
,
K.
Hirao
, and
S.
Hirata
,
J. Chem. Phys.
126
,
244106
(
2007
).
118.
T. J.
Watson
 Jr.
,
V. F.
Lotrich
,
P. G.
Szalay
,
A.
Perera
, and
R. J.
Bartlett
,
J. Phys. Chem. A
117
,
2569
(
2013
).
You do not currently have access to this content.