Knowledge of the protonation behavior of pH-sensitive molecules in micelles and bilayers has significant implications in consumer product development and biomedical applications. However, the calculation of pKa’s in such environments proves challenging using traditional structure-based calculations. Here we apply all-atom constant pH molecular dynamics with explicit ions and titratable water to calculate the pKa of a fatty acid molecule in a micelle of dodecyl trimethylammonium chloride and liquid as well as gel-phase bilayers of diethyl ester dimethylammonium chloride. Interestingly, the pKa of the fatty acid in the gel bilayer is 5.4, 0.4 units lower than that in the analogous liquid bilayer or micelle, despite the fact that the protonated carboxylic group is significantly more desolvated in the gel bilayer. This work illustrates the capability of all-atom constant pH molecular dynamics in capturing the delicate balance in the free energies of desolvation and Coulombic interactions. It also shows the importance of the explicit treatment of ions in sampling the protonation states. The ability to model dynamics of pH-responsive substrates in a bilayer environment is useful for improving fabric care products as well as our understanding of the side effects of anti-inflammatory drugs.

1.
Novel Surfactants: Preparation, Applications, and Biodegradability
, edited by
K.
Holmberg
(
Marcel Dekker, Inc.
,
2003
), Chap. 11.
2.
M.
Grit
and
D. J. A.
Crommelin
,
Chem. Phys. Lipids
64
,
3
(
1993
).
3.
V. P.
Torchilin
,
Nat. Rev. Drug Discov.
4
,
145
(
2005
).
4.
V.
Wagner
,
A.
Dullaart
,
A.-K.
Bock
, and
A.
Zweck
,
Nat. Biotechnol.
24
,
1211
(
2006
).
5.
S.
Mura
,
J.
Nicolas
, and
P.
Couvreur
,
Nat. Mater.
12
,
991
(
2013
).
6.
M. B.
Boggara
,
M.
Mihailescu
, and
R.
Krishnamoorti
,
J. Am. Chem. Soc.
134
,
19669
(
2012
).
7.
C.-Y.
Leung
,
L. C.
Palmer
,
B. F.
Qiao
,
S.
Kewalramani
,
R.
Sknepnek
,
C. J.
Newcomb
,
M. A.
Greenfield
,
G.
Vernizi
,
S. I.
Stupp
,
M. J.
Bedzyk
, and
M.
Olvera de la Cruz
,
ACS Nano
6
,
10901
(
2012
).
8.
K.
Lähdesmäki
,
O. S.
Ollila
,
A.
Koivuniemi
,
P. T.
Kovanen
, and
M. T.
Hyvönen
,
Biochim. Biophys. Acta
1798
,
938
(
2010
).
9.
L. D.
Schuler
,
P.
Walde
,
P. L.
Luisi
, and
W. F.
van Gunsteren
,
Eur. Biophys. J.
30
,
330
(
2001
).
11.
M. S.
Lee
,
F. R.
Salsbury
 Jr.
, and
C. L.
Brooks
 III
,
Proteins
56
,
738
(
2004
).
12.
J.
Khandogin
and
C. L.
Brooks
 III
,
Biophys. J.
89
,
141
(
2005
).
13.
J.
Khandogin
and
C. L.
Brooks
 III
,
Biochemistry
45
,
9363
(
2006
).
14.
J. A.
Wallace
and
J. K.
Shen
,
J. Chem. Theory Comput.
7
,
2617
(
2011
).
15.
J. A.
Wallace
,
Y.
Wang
,
C.
Shi
,
K. J.
Pastoor
,
B.-L.
Nguyen
,
K.
Xia
, and
J. K.
Shen
,
Proteins
79
,
3364
(
2011
).
16.
C.
Shi
,
J. A.
Wallace
, and
J. K.
Shen
,
Biophys. J.
102
,
1590
(
2012
).
17.
B. H.
Morrow
,
Y.
Wang
,
J. A.
Wallace
,
P. H.
Koenig
, and
J. K.
Shen
,
J. Phys. Chem. B
115
,
14980
(
2011
).
18.
J. A.
Wallace
and
J. K.
Shen
,
J. Chem. Phys.
137
,
184105
(
2012
).
19.
W.
Chen
,
J.
Wallace
,
Z.
Yue
, and
J.
Shen
,
Biophys. J.
105
,
L15
(
2013
).
20.
S.
Giolando
,
R.
Rapaport
,
R.
Larson
, and
T.
Federle
,
Chemosphere
30
,
1067
(
1995
).
21.
D.
Zhi
,
S.
Zhang
,
B.
Wang
,
Y.
Zhao
,
B.
Yang
, and
S.
Yu
,
Bioconjugate Chem.
21
,
563
(
2010
).
22.
B. H.
Morrow
,
P. H.
Koenig
, and
J. K.
Shen
,
J. Chem. Phys.
137
,
194902
(
2012
).
23.
B. H.
Morrow
,
P. H.
Koenig
, and
J. K.
Shen
,
Langmuir
29
,
14823
(
2013
).
24.
B. R.
Brooks
,
C. L.
Brooks
 III
,
A. D.
Mackerell
 Jr.
,
L.
Nilsson
,
R. J.
Petrella
,
B.
Roux
,
Y.
Won
,
G.
Archontis
,
C.
Bartles
,
S.
Boresch
,
A.
Caflisch
,
L.
Caves
,
Q.
Cui
,
A. R.
Dinner
,
M.
Feig
,
S.
Fischer
,
J.
Gao
,
M.
Hodoscek
,
W.
Im
,
K. K. T.
Lazaridis
,
J.
Ma
,
V.
Ovchinnikov
,
E.
Paci
,
R. W.
Pastor
,
C. B.
Post
,
J. Z.
Pu
,
M.
Schaefer
,
B.
Tidor
,
R. M.
Venable
,
H. L.
Woodcock
,
X.
Wu
,
W.
Yang
,
D. M.
York
, and
M.
Karplus
,
J. Comput. Chem.
30
,
1545
(
2009
).
25.
J. B.
Klauda
,
R. M.
Venable
,
J. A.
Freites
,
J. W.
O'Connor
,
D. J.
Tobias
,
C.
Mondragon-Ramirez
,
I.
Vorobyov
,
Alexander D.
MacKerell
 Jr.
, and
R. W.
Pastor
,
J. Phys. Chem. B
114
,
7830
(
2010
).
26.
A. D.
Mackerell
 Jr.
,
M.
Feig
, and
C. L.
Brooks
 III
,
J. Comput. Chem.
25
,
1400
(
2004
).
27.
Y.
Wang
,
J. A.
Wallace
,
P. H.
Koenig
, and
J. K.
Shen
,
J. Comput. Chem.
32
,
2348
(
2011
).
28.
P.
Hansson
,
B.
Jonsson
,
C.
Strom
, and
O.
Söderman
,
J. Phys. Chem. B
104
,
3496
(
2000
).
29.
F. L. B.
da Silva
,
D.
Bogren
,
O.
Söderman
,
T.
Åkesson
, and
B.
Jönsson
,
J. Phys. Chem. B
106
,
3515
(
2002
).
30.
S.
Jo
,
T.
Kim
, and
W.
Im
,
PLoS ONE
2
,
e880
(
2007
).
31.
S.
Jo
,
J. B.
Lim
,
J. B.
Klauda
, and
W.
Im
,
Biophys. J.
97
,
50
(
2009
).
32.
W. G.
Hoover
,
Phys. Rev. A
31
,
1695
(
1985
).
33.
S. E.
Feller
,
Y.
Zhang
,
R. W.
Pastor
, and
B. R.
Brooks
,
J. Chem. Phys.
103
,
4613
(
1995
).
34.
I. G.
Tironi
,
R.
Sperb
,
P. E.
Smith
, and
W. F.
van Gunsteren
,
J. Chem. Phys.
102
,
5451
(
1995
).
35.
See supplemental material at http://dx.doi.org/10.1063/1.4893439 for additional figures.

Supplementary Material

You do not currently have access to this content.