A new quantum Monte Carlo (QMC) method for anharmonic vibrational zero-point energies and transition frequencies is developed, which combines the diagrammatic vibrational many-body perturbation theory based on the Dyson equation with Monte Carlo integration. The infinite sums of the diagrammatic and thus size-consistent first- and second-order anharmonic corrections to the energy and self-energy are expressed as sums of a few m- or 2m-dimensional integrals of wave functions and a potential energy surface (PES) (m is the vibrational degrees of freedom). Each of these integrals is computed as the integrand (including the value of the PES) divided by the value of a judiciously chosen weight function evaluated on demand at geometries distributed randomly but according to the weight function via the Metropolis algorithm. In this way, the method completely avoids cumbersome evaluation and storage of high-order force constants necessary in the original formulation of the vibrational perturbation theory; it furthermore allows even higher-order force constants essentially up to an infinite order to be taken into account in a scalable, memory-efficient algorithm. The diagrammatic contributions to the frequency-dependent self-energies that are stochastically evaluated at discrete frequencies can be reliably interpolated, allowing the self-consistent solutions to the Dyson equation to be obtained. This method, therefore, can compute directly and stochastically the transition frequencies of fundamentals and overtones as well as their relative intensities as pole strengths, without fixed-node errors that plague some QMC. It is shown that, for an identical PES, the new method reproduces the correct deterministic values of the energies and frequencies within a few cm−1 and pole strengths within a few thousandths. With the values of a PES evaluated on the fly at random geometries, the new method captures a noticeably greater proportion of anharmonic effects.

1.
J. M.
Bowman
,
T.
Carrington
, and
H.-D.
Meyer
,
Mol. Phys.
106
,
2145
(
2008
).
2.
L.
Lodi
and
J.
Tennyson
,
J. Phys. B: At. Mol. Opt. Phys.
43
,
133001
(
2010
).
3.
J. M.
Bowman
,
J. Chem. Phys.
68
,
608
(
1978
).
4.
J. M.
Bowman
,
Acc. Chem. Res.
19
,
202
(
1986
).
5.
M. A.
Ratner
and
R. B.
Gerber
,
J. Phys. Chem.
90
,
20
(
1986
).
6.
L. S.
Norris
,
M. A.
Ratner
,
A. E.
Roitberg
, and
R. B.
Gerber
,
J. Chem. Phys.
105
,
11261
(
1996
).
7.
O.
Christiansen
,
J. Chem. Phys.
119
,
5773
(
2003
).
8.
F. L.
Tobin
and
J. M.
Bowman
,
Chem. Phys.
47
,
151
(
1980
).
9.
O.
Christiansen
,
J. Chem. Phys.
120
,
2149
(
2004
).
10.
S.
Hirata
,
M.
Keçeli
, and
K.
Yagi
,
J. Chem. Phys.
133
,
034109
(
2010
).
11.
S.
Hirata
,
Theor. Chem. Acc.
129
,
727
(
2011
).
12.
S.
Hirata
,
M.
Keçeli
,
Y.-y.
Ohnishi
,
O.
Sode
, and
K.
Yagi
,
Annu. Rev. Phys. Chem.
63
,
131
(
2012
).
13.
R. J.
Bartlett
,
Annu. Rev. Phys. Chem.
32
,
359
(
1981
).
14.
I.
Shavitt
and
R. J.
Bartlett
,
Many-Body Methods in Chemistry and Physics
(
Cambridge University Press
,
2009
).
15.
I. M.
Mills
and
A. G.
Robiette
,
Mol. Phys.
56
,
743
(
1985
).
16.
R. D.
Amos
,
N. C.
Handy
,
W. H.
Green
,
D.
Jayatilaka
,
A.
Willetts
, and
P.
Palmieri
,
J. Chem. Phys.
95
,
8323
(
1991
).
17.
J. M. L.
Martin
,
T. J.
Lee
,
P. R.
Taylor
, and
J.-P.
François
,
J. Chem. Phys.
103
,
2589
(
1995
).
18.
V.
Barone
and
C.
Minichino
,
J. Mol. Struct.: THEOCHEM
330
,
365
(
1995
).
19.
V.
Barone
,
J. Chem. Phys.
120
,
3059
(
2004
).
20.
V.
Barone
,
J. Chem. Phys.
122
,
014108
(
2005
).
21.
D. A.
Matthews
,
J.
Vázquez
, and
J. F.
Stanton
,
Mol. Phys.
105
,
2659
(
2007
).
22.
J.
Vázquez
and
J. F.
Stanton
,
Mol. Phys.
105
,
101
(
2007
).
23.
A. A.
Maradudin
and
A. E.
Fein
,
Phys. Rev.
128
,
2589
(
1962
).
24.
25.
V. V.
Goldman
,
G. K.
Horton
, and
M. L.
Klein
,
Phys. Rev. Lett.
21
,
1527
(
1968
).
26.
T. R.
Koehler
,
Phys. Rev. Lett.
22
,
777
(
1969
).
27.
M. R.
Hermes
and
S.
Hirata
,
J. Chem. Phys.
139
,
034111
(
2013
).
28.
M.
Keçeli
and
S.
Hirata
,
J. Chem. Phys.
135
,
134108
(
2011
).
29.
M. R.
Hermes
,
M.
Keçeli
, and
S.
Hirata
,
J. Chem. Phys.
136
,
234109
(
2012
).
30.
M. R.
Hermes
and
S.
Hirata
,
J. Phys. Chem. A
117
,
7179
(
2013
).
31.
32.
P.
Choquard
,
The Anharmonic Crystal
(
W. A. Benjamin, Inc.
,
1967
).
33.
N. S.
Gillis
,
N. R.
Werthamer
, and
T. R.
Koehler
,
Phys. Rev.
165
,
951
(
1968
).
34.
M. V.
Kuzmin
and
A. A.
Stuchebrukhov
,
Chem. Phys. Lett.
119
,
556
(
1985
).
35.
A. A.
Stuchebrukhov
,
J. Mol. Struct.
178
,
261
(
1988
).
36.
O. V.
Boyarkin
,
S. I.
Ionov
,
A. A.
Stuchebrukhov
,
V. N.
Bagratashvili
, and
M. S.
Djidjoev
,
J. Phys. Chem.
94
,
1294
(
1990
).
37.
W. M. C.
Foulkes
,
L.
Mitas
,
R. J.
Needs
, and
G.
Rajagopal
,
Rev. Mod. Phys.
73
,
33
(
2001
).
38.
R. J.
Needs
,
M. D.
Towler
,
N. D.
Drummond
, and
P.
López Ríos
,
J. Phys.: Condens. Matter
22
,
023201
(
2010
).
39.
B. M.
Austin
,
D. Y.
Zubarev
, and
W. A.
Lester
 Jr.
,
Chem. Rev.
112
,
263
(
2012
).
40.
L. K.
Wagner
,
Int. J. Quantum Chem.
114
,
94
(
2014
).
41.
A. B.
McCoy
,
Int. Rev. Phys. Chem.
25
,
77
(
2006
).
42.
A. B.
McCoy
, in
Advances in Quantum Monte Carlo
, edited by
J. B.
Anderson
and
S. M.
Rothstein
(
American Chemical Society
,
2007
), Vol.
953
, Chap. 11.
43.
R. C.
Grimm
and
R. G.
Storer
,
J. Comput. Phys.
7
,
134
(
1971
).
44.
S.
Hirata
,
X.
He
,
M. R.
Hermes
, and
S. Y.
Willow
,
J. Phys. Chem. A
118
,
655
(
2014
).
45.
A factor of 1/2 was erroneously omitted from Eq. (53) of Ref. 27. However, the computer program used to generate numerical results in Ref. 27 implemented the correct expression.
46.
47.
K.
Yagi
,
K.
Hirao
,
T.
Taketsugu
,
M. W.
Schmidt
, and
M. S.
Gordon
,
J. Chem. Phys.
121
,
1383
(
2004
).
48.
S. Y.
Willow
,
K. S.
Kim
, and
S.
Hirata
,
J. Chem. Phys.
137
,
204122
(
2012
).
49.
N.
Metropolis
,
A. W.
Rosenbluth
,
M. N.
Rosenbluth
,
A. H.
Teller
, and
E.
Teller
,
J. Chem. Phys.
21
,
1087
(
1953
).
50.
A. S.
Kronrod
,
Nodes and Weights of Quadrature Formulas: Sixteen-Place Tables
(
Consultants Bureau
,
New York
,
1965
).
51.
H.
Flyvbjerg
and
H. G.
Petersen
,
J. Chem. Phys.
91
,
461
(
1989
).
52.
F.
Calvo
,
P.
Parneix
, and
N.-T.
Van-Oanh
,
J. Chem. Phys.
133
,
074303
(
2010
).
53.
S. E.
Brown
,
I.
Georgescu
, and
V. A.
Mandelshtam
,
J. Chem. Phys.
138
,
044317
(
2013
).
54.
I.
Georgescu
,
S.
Jitomirskaya
, and
V. A.
Mandelshtam
,
J. Chem. Phys.
139
,
204104
(
2013
).
55.
I.
Errea
,
M.
Calandra
, and
F.
Mauri
,
Phys. Rev. B
89
,
064302
(
2014
).
56.
S. Y.
Willow
,
M. R.
Hermes
,
K. S.
Kim
, and
S.
Hirata
,
J. Chem. Theory Comput.
9
,
4396
(
2013
).
57.
J. B.
Anderson
,
J. Chem. Phys.
63
,
1499
(
1975
).
58.
H.-S.
Lee
,
J. M.
Herbert
, and
A. B.
McCoy
,
J. Chem. Phys.
110
,
5481
(
1999
).
59.
A. S.
Petit
and
A. B.
McCoy
,
J. Phys. Chem. A
117
,
7009
(
2013
).
60.
A. S.
Petit
,
J. E.
Ford
, and
A. B.
McCoy
, “
Simultaneous evaluation of multiple rotationally excited states of H3+, H3O+, and CH5+ using diffusion Monte Carlo
,”
J. Phys. Chem. A
(published online).
61.
D.
Blume
,
M.
Lewerenz
, and
K. B.
Whaley
,
J. Chem. Phys.
107
,
9067
(
1997
).
62.
D.
Blume
,
M.
Lewerenz
,
P.
Niyaz
, and
K. B.
Whaley
,
Phys. Rev. E
55
,
3664
(
1997
).
63.
W.
Jones
and
N. H.
March
,
Theoretical Solid State Physics
(
Wiley
,
1973
).
64.
N. H.
March
,
W. H.
Young
, and
S.
Sampanthar
,
The Many-Body Problem in Quantum Mechanics
(
Cambridge University Press
,
1967
).
65.
J. T.
Krogel
and
D. M.
Ceperley
, in
Advances in Quantum Monte Carlo
, edited by
S.
Tanaka
,
S. M.
Rothstein
, and
W. A.
Lester
 Jr.
(
American Chemical Society
,
2012
), Vol.
1094
, Chap. 2.
66.
D. M.
Ceperley
and
B.
Bernu
,
J. Chem. Phys.
89
,
6316
(
1988
).
67.
B.
Bernu
,
D. M.
Ceperley
, and
W. A.
Lester
 Jr.
,
J. Chem. Phys.
93
,
552
(
1990
).
68.
S. Y.
Willow
,
K. S.
Kim
, and
S.
Hirata
,
J. Chem. Phys.
138
,
164111
(
2013
).
69.
S. Y.
Willow
and
S.
Hirata
,
J. Chem. Phys.
140
,
024111
(
2014
).
70.
S. Y.
Willow
,
J.
Zhang
,
E. F.
Valeev
, and
S.
Hirata
,
J. Chem. Phys.
140
,
031101
(
2014
).
71.
R.
Baer
,
M.
Head-Gordon
, and
D.
Neuhauser
,
J. Chem. Phys.
109
,
6219
(
1998
).
72.
S.
Zhang
and
H.
Krakauer
,
Phys. Rev. Lett.
90
,
136401
(
2003
).
73.
A. J. W.
Thom
and
A.
Alavi
,
Phys. Rev. Lett.
99
,
143001
(
2007
).
74.
Y.
Ohtsuka
and
S.
Nagase
,
Chem. Phys. Lett.
463
,
431
(
2008
).
75.
G. H.
Booth
,
A. J. W.
Thom
, and
A.
Alavi
,
J. Chem. Phys.
131
,
054106
(
2009
).
76.
D.
Cleland
,
G. H.
Booth
, and
A.
Alavi
,
J. Chem. Phys.
132
,
041103
(
2010
).
77.
J. J.
Shepherd
,
G. H.
Booth
, and
A.
Alavi
,
J. Chem. Phys.
136
,
244101
(
2012
).
78.
D.
Neuhauser
,
E.
Rabani
, and
R.
Baer
,
J. Chem. Theory Comput.
9
,
24
(
2013
).
79.
S.
Ten-no
,
J. Chem. Phys.
138
,
164126
(
2013
).
80.
M.
Valiev
,
E. J.
Bylaska
,
N.
Govind
,
K.
Kowalski
,
T. P.
Straatsma
,
H. J. J.
Van Dam
,
D.
Wang
,
J.
Nieplocha
,
E.
Apra
,
T. L.
Windus
, and
W. A.
de Jong
,
Comput. Phys. Commun.
181
,
1477
(
2010
).
81.
J.
Tennyson
,
N. F.
Zobov
,
R.
Williamson
,
O. L.
Polyansky
, and
P. F.
Bernath
,
J. Phys. Chem. Ref. Data
30
,
735
(
2001
).
You do not currently have access to this content.