The interaction of thermal Ar plasma particles with Si and W surfaces is modeled using classical molecular dynamics (MD) simulations. At plasma energies above the threshold for ablation, the ablation yield can be calculated directly from MD. For plasma energies below threshold, the ablation yield becomes exponentially low, and direct MD simulations are inefficient. Instead, we propose an integration method where the yield is calculated as a function of the Ar incident kinetic energy. Subsequent integration with a Boltzmann distribution at the temperature of interest gives the thermal ablation yield. At low plasma temperatures, the ablation yield follows an Arrhenius form in which the activation energy is shown to be the threshold energy for ablation. Interestingly, equilibrium material properties, including the surface and bulk cohesive energy, are not good predictors of the threshold energy for ablation. The surface vacancy formation energy is better, but is still not a quantitative predictor. An analysis of the trajectories near threshold shows that ablation occurs by different mechanisms on different material surfaces, and both the mechanism and the binding of surface atoms determine the threshold energy.

1.
2.
R.
Zwanzig
,
J. Stat. Phys.
9
,
215
(
1973
).
3.
H.
Mori
,
Prog. Theor. Phys.
33
,
423
(
1965
).
4.
S. A.
Adelman
and
J. D.
Doll
,
J. Chem. Phys.
64
,
2375
(
1976
).
5.
J. C.
Tully
,
J. Chem. Phys.
73
,
1975
(
1980
).
6.
J. C.
Tully
,
Acc. Chem. Res
14
,
188
(
1981
).
7.
K.-H.
Muller
,
J. Appl. Phys.
62
,
1796
(
1987
).
8.
R. A.
Stansfield
,
K.
Broomfield
, and
D. C.
Clary
,
Phys. Rev. B
39
,
7680
(
1989
).
9.
M. E.
Barone
and
D. B.
Graves
,
J. Appl. Phys.
78
,
6604
(
1995
).
10.
N. A.
Kubota
and
D. J.
Econumou
,
J. Appl. Phys.
83
,
4055
(
1998
).
11.
B. A.
Helmer
and
D. B.
Graves
,
J. Vac. Sci. Technol. A
15
,
2252
(
1997
).
12.
C. F.
Abrams
and
D. B.
Graves
,
J. Appl. Phys.
86
,
5938
(
1999
).
13.
C.
Yan
and
Q. Y.
Zhang
,
AIP Adv.
2
,
032107
(
2012
).
14.
S. A.
Norris
,
J.
Samela
,
L.
Bukonte
,
M.
Backman
,
F.
Djurabekova
,
K.
Nordlund
,
C. S.
Madi
,
M. P.
Brenner
, and
M. J.
Aziz
,
Nat. Commun.
2
,
276
(
2011
).
15.
J. D.
Kress
,
D. E.
Hanson
,
A. F.
Voter
,
C. L.
Liu
,
X.-Y.
Liu
, and
D. G.
Coronell
,
J. Vac. Sci. Technol. A
17
,
2819
(
1999
).
16.
J.-L.
Cambier
,
M.
Young
,
L.
Pekker
, and
A.
Pancotti
, in Proceedings of the 30th International Conference on Electric Propulsion, IEPC-2007-238, Florence
2007
.
17.
S.
Satake
,
N.
Inoue
,
T.
Kunugi
,
M.
Shibahara
, and
H.
Kasahara
,
Nucl. Instrum. Methods Phys. Res. B
257
,
639
(
2007
).
18.
D.
Zhao
and
J. E.
Adams
,
Langmuir
1
,
557
(
1985
).
19.
S.
Plimpton
,
J. Comput. Phys.
117
,
1
(
1995
).
20.
F. H.
Stillinger
and
T. A.
Weber
,
Phys. Rev. B
31
,
5262
(
1985
).
21.
X. W.
Zhou
,
H. N. G.
Wadley
,
R. A.
Johnson
,
D. J.
Larson
,
N.
Tabat
,
A.
Cerezo
,
A. K.
Petford-Long
,
G. D. W.
Smith
,
P. H.
Clifton
,
R. L.
Martens
, and
T. F.
Kelly
,
Acta Mater.
49
,
4005
(
2001
).
22.
S.
Nose
,
J. Chem. Phys.
81
,
511
(
1984
).
23.
W. G.
Hoover
,
Phys. Rev. A
31
,
1695
(
1985
).
24.
K.
Hata
,
S.
Yoshida
, and
H.
Shigekawa
,
Phys. Rev. Lett.
89
,
286104
(
2002
).
25.
G.
Binnig
,
H.
Rohrer
,
C.
Gerber
, and
E.
Weibel
,
Phys. Rev. Lett.
50
,
120
(
1983
).
26.
M. M.
Schlüter
,
J. R.
Chelikowsky
,
S. G.
Louie
, and
M. L.
Cohen
,
Phys. Rev. B
12
,
4200
(
1975
).
27.
A.
Gut
,
An Intermediate Course in Probability
(
Springer
,
1995
), p.
35
.
28.
F.
Gou
,
A. W.
Kleyn
, and
M. A.
Gleeson
,
Int. Rev. Phys. Chem.
27
,
229
(
2008
).
29.
R. V.
Stuart
and
G. K.
Wehner
,
J. Appl. Phys.
33
,
2345
(
1962
).
30.
R. M.
Bradley
,
Phys. Rev. B
85
,
115419
(
2012
).
31.
R. M.
Bradley
and
J. M. E.
Harper
,
J. Vac. Sci. Technol. A
6
,
2390
(
1988
).
You do not currently have access to this content.