A question of considerable interest to cell membrane biology is whether phase segregated domains across an asymmetric bilayer are strongly correlated with each other and whether phase segregation in one leaflet can induce segregation in the other. We answer both these questions in the affirmative, using an atomistic molecular dynamics simulation to study the equilibrium statistical properties of a 3-component asymmetric lipid bilayer comprising an unsaturated palmitoyl-oleoyl-phosphatidyl-choline, a saturated sphingomyelin, and cholesterol with different composition ratios. Our simulations are done by fixing the composition of the upper leaflet to be at the coexistence of the liquid ordered (lo)-liquid disordered (ld) phases, while the composition of the lower leaflet is varied from the phase coexistence regime to the mixed ld phase, across a first-order phase boundary. In the regime of phase coexistence in each leaflet, we find strong transbilayer correlations of the lo domains across the two leaflets, resulting in bilayer registry. This transbilayer correlation depends sensitively upon the chain length of the participating lipids and possibly other features of lipid chemistry, such as degree of saturation. We find that the lo domains in the upper leaflet can induce phase segregation in the lower leaflet, when the latter is nominally in the mixed (ld) phase.

1.
K.
Simons
and
E.
Ikonen
,
Nature (London)
387
,
569
572
(
1997
).
2.
D.
Lingwood
and
K.
Simons
,
Science
327
,
46
50
(
2010
).
3.
K.
Simons
and
D.
Toomre
,
Nat. Rev. Mol. Cell. Biol.
1
,
31
39
(
2000
).
4.
S.
Mayor
and
M.
Rao
,
Traffic
5
,
231
240
(
2004
).
5.
S. L.
Veatch
and
S. L.
Keller
,
Phys. Rev. Lett.
89
,
268101
(
2002
).
6.
S. L.
Veatch
and
S. L.
Keller
,
Biophys. J.
85
,
3074
3083
(
2003
).
7.
T.
Baumgart
,
S.
Hess
, and
W.
Webb
,
Nature (London)
425
,
821
824
(
2003
).
8.
C.
Wan
,
V.
Kiessling
, and
L.
Tamm
,
Biochemistry
47
,
2190
2198
(
2008
).
9.
M.
Collins
and
S.
Keller
,
Proc. Natl. Acad. Sci. U.S.A.
105
,
124
128
(
2008
).
10.
D. W.
Allender
and
M.
Schick
,
Biophys. J.
91
,
2928
2935
(
2006
).
11.
G.
Putzel
,
M.
Uline
,
I.
Szleifer
, and
M.
Schick
,
Biophys. J.
100
,
996
1004
(
2011
).
12.
H.
Risselada
and
S.
Marrink
,
Proc. Natl. Acad. Sci. U.S.A.
105
,
17367
17372
(
2008
).
13.
A.
Kusumi
,
I.
Koyama-Honda
, and
K.
Suzuki
,
Traffic
5
,
213
230
(
2004
).
14.
S. I.
Hakomori
,
Biochim. Biophys. Acta
1780
,
325
346
(
2008
).
15.
J. F.
Hancock
,
Nat. Rev. Mol. Cell Biol.
7
,
456
462
(
2006
).
16.
P.
Sharma
,
R.
Varma
,
R.
Sarasij
,
Ira
,
K.
Gousset
,
G.
Krishnamoorthy
,
M.
Rao
, and
S.
Mayor
,
Cell
116
,
577
589
(
2004
).
17.
D.
Goswami
,
K.
Gowrishankar
,
S.
Bilgrami
,
S.
Ghosh
,
R.
Raghupathy
,
R.
Chadda
,
R.
Vishwakarma
,
M.
Rao
, and
S.
Mayor
,
Cell
135
,
1085
1097
(
2008
).
18.
K.
Gowrishankar
,
S.
Ghosh
,
S.
Saha
,
C.
Rumamol
,
S.
Mayor
, and
M.
Rao
,
Cell
149
,
1353
1367
(
2012
).
19.
A.
Polley
,
S.
Vemparala
, and
M.
Rao
,
J. Phys. Chem. B
116
,
13403
13410
(
2012
).
20.
D. P.
Tieleman
and
H. J.
Berendsen
,
Biophys. J.
74
,
2786
2801
(
1998
).
21.
P. S.
Niemelä
,
S.
Ollila
,
M. T.
Hyvönen
,
M.
Karttunen
, and
I.
Vattulainen
,
PLoS Comput. Biol.
3
,
e34
(
2007
).
22.
L.
Martínez
,
R.
Andrade
,
E.
Birgin
, and
J.
Martínez
,
J. Comput. Chem.
30
,
2157
2164
(
2009
).
23.
M.
Patra
and
M.
Karttunen
,
J. Phys. Chem. B
108
,
4485
4494
(
2004
).
24.
B.
Hess
,
H.
Bekker
,
H. J. C.
Berendsen
, and
J. G. E. M.
Fraaije
,
J. Comput. Chem.
18
,
1463
1472
(
1997
).
25.
S.
Miyamoto
and
P. A.
Kollman
,
J. Comput. Chem.
13
,
952
962
(
1992
).
26.
J.-P.
Ryckaert
,
G.
Ciccotti
, and
H. J.
Berendsen
,
J. Comput. Phys.
23
,
327
341
(
1977
).
27.
S. A.
Safran
,
Statistical Thermodynamics of Surfaces, Interfaces, and Membranes
(
Addison-Wesley
,
1994
).
28.
R. F. M.
de Almeida
,
A.
Fedorov
, and
M.
Prieto
,
Biophys. J.
85
,
2406
2416
(
2003
).
29.
P. M.
Chaikin
and
T. C.
Lubensky
,
Principles of Condensed Matter Physics
(
Cambridge University Press
,
2000
).
30.
E. B.
Watkins
,
C. E.
Miller
,
J.
Majewski
, and
T. L.
Kuhl
,
Proc. Natl. Acad. Sci. U.S.A.
108
,
6975
6980
(
2011
).
31.
See supplementary material at http://dx.doi.org/10.1063/1.4892087 for time series of force, torque, surface tension, area per lipid, and deuterium order parameter of the mechanically stable asymmetric multicomponent lipid bilayers. In addition, figures describing additional details of the equilibrium pressure, transbilayer correlation coefficient, ratio of the perimeter to area of the mismatch area, and probability of mismatch area of the various model systems have been included.

Supplementary Material

You do not currently have access to this content.