A scheme utilizing excitation of core electrons followed by the resonant-Auger – interatomic Coulombic decay (RA-ICD) cascade was recently proposed as a means of controlling the generation site and energies of slow ICD electrons. This control mechanism was verified in a series of experiments in rare gas dimers. In this article, we present fully ab initio computed ICD electron and kinetic energy release spectra produced following 2p3/2 → 4s, 2p1/2 → 4s, and 2p3/2 → 3d core excitations of Ar in Ar2. We demonstrate that the manifold of ICD states populated in the resonant Auger process comprises two groups. One consists of lower energy ionization satellites characterized by fast interatomic decay, while the other consists of slow decaying higher energy ionization satellites. We show that accurate description of nuclear dynamics in the latter ICD states is crucial for obtaining theoretical electron and kinetic energy release spectra in good agreement with the experiment.

1.
A.
Mozumder
,
Fundamentals of Radiation Chemistry
(
Academic Press
,
1999
).
2.
L. S.
Cederbaum
,
J.
Zobeley
, and
F.
Tarantelli
,
Phys. Rev. Lett.
79
,
4778
(
1997
).
3.
U.
Hergenhahn
,
J. Electron Spectrosc. Relat. Phenom.
184
,
78
(
2011
).
4.
W.
Pokapanich
,
N. V.
Kryzhevoi
,
N.
Ottosson
,
S.
Svensson
,
L. S.
Cederbaum
,
G.
Öhrwall
, and
O.
Björneholm
,
J. Am. Chem. Soc.
133
,
13430
(
2011
).
5.
S. D.
Stoychev
,
A. I.
Kuleff
, and
L. S.
Cederbaum
,
J. Am. Chem. Soc.
133
,
6817
(
2011
).
6.
N. V.
Kryzhevoi
and
L. S.
Cederbaum
,
Angew. Chem., Int. Ed.
50
,
1306
(
2011
).
7.
K.
Gokhberg
,
P.
Kolorenč
,
A. I.
Kuleff
, and
L. S.
Cederbaum
,
Nature (London)
505
,
661
(
2014
).
8.
K.
Ueda
,
J. Phys. Soc. Jpn.
75
,
032001
(
2006
).
9.
H.
Aksela
,
S.
Aksela
, and
H.
Pulkkinen
,
Phys. Rev. A
37
,
1798
(
1988
).
10.
T. W.
Gorczyca
and
F.
Robicheaux
,
Phys. Rev. A
60
,
1216
(
1999
).
11.
U.
Hergenhahn
,
A.
Rüdel
,
K.
Maier
,
A.
Bradshaw
,
R.
Fink
, and
A.
Wen
,
Chem. Phys.
289
,
57
(
2003
).
12.
P.
Bolognesi
,
P.
O’Keeffe
,
Y.
Ovcharenko
,
M.
Coreno
,
L.
Avaldi
,
V.
Feyer
,
O.
Plekan
,
K. C.
Prince
,
W.
Zhang
, and
V.
Carravetta
,
J. Chem. Phys.
133
,
034302
(
2010
).
13.
F.
Trinter
,
M. S.
Schöffler
,
H.-K.
Kim
,
F. P.
Sturm
,
K.
Cole
,
N.
Neumann
,
A.
Vredenborg
,
J.
Williams
,
I.
Bocharova
,
R.
Guillemin
 et al,
Nature (London)
505
,
664
(
2014
).
14.
M.
Kimura
,
H.
Fukuzawa
,
K.
Sakai
,
S.
Mondal
,
E.
Kukk
,
Y.
Kono
,
S.
Nagaoka
,
Y.
Tamenori
,
N.
Saito
, and
K.
Ueda
,
Phys. Rev. A
87
,
043414
(
2013
).
15.
P.
O’Keeffe
,
E.
Ripani
,
P.
Bolognesi
,
M.
Coreno
,
M.
Devetta
,
C.
Callegari
,
M.
Di Fraia
,
K. C.
Prince
,
R.
Richter
,
M.
Alagia
 et al,
J. Phys. Chem. Lett.
4
,
1797
(
2013
).
16.
M.
Kimura
,
H.
Fukuzawa
,
T.
Tachibana
,
Y.
Ito
,
S.
Mondal
,
M.
Okunishi
,
M.
Schöffler
,
J.
Williams
,
Y.
Jiang
,
Y.
Tamenori
 et al,
J. Phys. Chem. Lett.
4
,
1838
(
2013
).
17.
M.
Meyer
,
E. v.
Raven
,
B.
Sonntag
, and
J.
Hansen
,
Phys. Rev. A
43
,
177
(
1991
).
18.
J. A.
de Gouw
,
J.
van Eck
,
A. C.
Peters
,
J.
van der Weg
, and
H. G. M.
Heideman
,
J. Phys. B: At. Mol. Opt. Phys.
28
,
2127
(
1995
).
19.
J. C.
Fuggle
and
S. F.
Alvarado
,
Phys. Rev. A
22
,
1615
(
1980
).
20.
P.
Piecuch
,
S. A.
Kucharski
,
K.
Kowalski
, and
M.
Musiał
,
Comput. Phys. Commun.
149
,
71
(
2002
).
21.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
22.
T.
Van Mourik
and
T. H.
Dunning
,
Int. J. Quantum Chem.
76
,
205
(
2000
).
23.
P. R.
Herman
,
P. E.
Larocque
, and
B. P.
Stoicheff
,
J. Chem. Phys.
89
,
4535
(
1988
).
24.
B. R.
Brooks
and
H. F.
Schaefer
,
J. Chem. Phys.
70
,
5092
(
1979
).
25.
B. R.
Brooks
,
W. D.
Laidig
,
P.
Saxe
,
N. C.
Handy
, and
H. F.
Schaefer
 III
,
Phys. Scr.
21
,
312
(
1980
).
26.
D. E.
Woon
and
T. H.
Dunning
 Jr.
,
J. Chem. Phys.
98
,
1358
(
1993
).
27.
The exponents of the diffuse s functions are 0.0739 and 0.0234. The exponents of the d functions are: 2.3300 and 7.3800 for the two compact d functions, and 0.2330 and 0.0738 for the two diffuse d functions.
28.
T.
Miteva
,
S.
Klaiman
,
E. V.
Gromov
, and
K.
Gokhberg
,
J. Chem. Phys.
140
,
204320
(
2014
).
29.
A.
Kramida
,
Y.
Ralchenko
,
J.
Reader
, and
N. A.
Team
, NIST Atomic Spectra Database (version 5.1) (National Institute of Standards and Technology, Gaithersburg, MD
2013
), see http://physics.nist.gov/asd.
30.
V.
Averbukh
and
L. S.
Cederbaum
,
J. Chem. Phys.
123
,
204107
(
2005
).
31.
A.
Nicklass
,
M.
Dolg
,
H.
Stoll
, and
H.
Preuss
,
J. Chem. Phys.
102
,
8942
(
1995
).
32.
K.
Kaufmann
,
W.
Baumeister
, and
M.
Jungen
,
J. Phys. B: At. Mol. Opt.
22
,
2223
(
1989
).
33.
V.
Averbukh
,
I. B.
Müller
, and
L. S.
Cederbaum
,
Phys. Rev. Lett.
93
,
263002
(
2004
).
34.
S.
Scheit
,
L. S.
Cederbaum
, and
H.-D.
Meyer
,
J. Chem. Phys.
118
,
2092
(
2003
).
35.
S.
Scheit
,
V.
Averbukh
,
H.-D.
Meyer
,
N.
Moiseyev
,
R.
Santra
,
T.
Sommerfeld
,
J.
Zobeley
, and
L. S.
Cederbaum
,
J. Chem. Phys.
121
,
8393
(
2004
).
36.
P. V.
Demekhin
,
S.
Scheit
,
S. D.
Stoychev
, and
L. S.
Cederbaum
,
Phys. Rev. A
78
,
043421
(
2008
).
37.
P. V.
Demekhin
,
Y.-C.
Chiang
,
S. D.
Stoychev
,
P.
Kolorenč
,
S.
Scheit
,
A. I.
Kuleff
,
F.
Tarantelli
, and
L. S.
Cederbaum
,
J. Chem. Phys.
131
,
104303
(
2009
).
38.
E.
Pahl
,
H.-D.
Meyer
, and
L. S.
Cederbaum
,
Z. Phys. D
38
,
215
(
1996
).
39.
T. F.
O’Malley
,
Phys. Rev.
150
,
14
(
1966
).
40.
J. N.
Bardsley
,
J. Phys. B At. Mol. Opt. Phys.
1
,
349
(
1968
).
41.
L. S.
Cederbaum
and
W.
Domcke
,
J. Phys. B At. Mol. Opt. Phys.
14
,
4665
(
1981
).
42.
W. T.
Pollard
and
R. A.
Friesner
,
J. Chem. Phys.
100
,
5054
(
1994
).
43.
H.-D.
Meyer
,
U.
Manthe
, and
L. S.
Cederbaum
,
Chem. Phys. Lett.
165
,
73
(
1990
).
44.
H.-D.
Meyer
,
G. A.
Worth
,
M. H.
Beck
,
A.
Jäckle
,
U.
Manthe
,
M.
Ehara
,
A.
Raab
,
M.-C.
Heitz
,
S.
Sukiasyan
,
C.
Cattarius
 et al, The MCTDH Package, version 8.4 (
2007
), see http://mctdh.uni-hd.de/.
45.
N.
Moiseyev
,
R.
Santra
,
J.
Zobeley
, and
L. S.
Cederbaum
,
J. Chem. Phys.
114
,
7351
(
2001
).
46.
T.
Jahnke
,
A.
Czasch
,
M. S.
Schöffler
,
S.
Schössler
,
A.
Knapp
,
M.
Käsz
,
J.
Titze
,
C.
Wimmer
,
K.
Kreidi
,
R. E.
Grisenti
 et al,
Phys. Rev. Lett.
93
,
163401
(
2004
).
47.
Y.-C.
Chiang
,
F.
Otto
,
H.-D.
Meyer
, and
L. S.
Cederbaum
,
J. Chem. Phys.
136
,
114111
(
2012
).
48.
F.
Trinter
,
J. B.
Williams
,
M.
Weller
,
M.
Waitz
,
M.
Pitzer
,
J.
Voigtsberger
,
C.
Schober
,
G.
Kastirke
,
C.
Müller
,
C.
Goihl
 et al,
Phys. Rev. Lett.
111
,
093401
(
2013
).
49.
N.
Sisourat
,
N. V.
Kryzhevoi
,
P.
Kolorenč
,
S.
Scheit
,
T.
Jahnke
, and
L. S.
Cederbaum
,
Nat. Phys.
6
,
508
(
2010
).
50.
K.
Ueda
and
H.
Fukuzawa
, private communication (
2014
).
51.
T.
Ouchi
,
K.
Sakai
,
H.
Fukuzawa
,
I.
Higuchi
,
P. V.
Demekhin
,
Y.-C.
Chiang
,
S. D.
Stoychev
,
A. I.
Kuleff
,
T.
Mazza
,
M.
Schöffler
 et al,
Phys. Rev. A
83
,
053415
(
2011
).
52.
G.
Jabbari
,
S.
Klaiman
,
Y.-C.
Chiang
,
F.
Trinter
,
T.
Jahnke
, and
K.
Gokhberg
,
J. Chem. Phys.
140
,
224305
(
2014
).
You do not currently have access to this content.