Ultrahigh energy density batteries based on α-LixBN2 (1 ⩽ x ⩽ 3) positive electrode materials are predicted using density functional theory calculations. The utilization of the reversible LiBN2 + 2 Li+ + 2 e

$\rightleftharpoons$
Li3BN2 electrochemical cell reaction leads to a voltage of 3.62 V (vs Li/Li+), theoretical energy densities of 3251 Wh/kg and 5927 Wh/l, with capacities of 899 mAh/g and 1638 mAh/cm3, while the cell volume of α-Li3BN2 shrinks only 2.8% per two-electron transfer on charge. These values are far superior to the best existing or theoretically designed intercalation or conversion-based positive electrode materials. For comparison, the theoretical energy density of a Li–O2/peroxide battery is 3450 Wh/kg (including the weight of O2), that of a Li–S battery is 2600 Wh/kg, that of Li3Cr(BO3)(PO4) (one of the best designer intercalation materials) is 1700 Wh/kg, while already commercialized LiCoO2 allows for 568 Wh/kg. α-Li3BN2 is also known as a good Li-ion conductor with experimentally observed 3 mS/cm ionic conductivity and 78 kJ/mol (≈0.8 eV) activation energy of conduction. The attractive features of α-LixBN2 (1 ⩽ x ⩽ 3) are based on a crystal lattice of 1D conjugated polymers with –Li–N–B–N– repeating units. When some of the Li is deintercalated from α-Li3BN2 the crystal becomes a metallic electron conductor, based on the underlying 1D conjugated π electron system. Thus, α-LixBN2 (1 ⩽ x ⩽ 3) represents a new type of 1D conjugated polymers with significant potential for energy storage and other applications.

1.
B.
Xu
,
D.
Qian
,
Z.
Wang
, and
Y. S.
Meng
,
Mater. Sci. Eng. R
73
,
51
(
2012
).
2.
B. C.
Melot
and
J.-M.
Tarascon
,
Acc. Chem. Res.
46
,
1226
(
2013
).
3.
M.-K.
Song
,
Y.
Zhang
, and
E. J.
Cairns
,
Nano Lett.
13
,
5891
(
2013
).
4.
P.
Meduri
,
H.
Chen
,
J.
Xiao
,
J. J.
Martinez
,
T.
Carlson
,
J.-G.
Zhang
, and
Z. D.
Deng
,
J. Mater. Chem. A
1
,
7866
(
2013
).
5.
L.
Li
,
F.
Meng
, and
S.
Jin
,
Nano Lett.
12
,
6030
(
2012
).
6.
G.
Hautier
,
A.
Jain
,
H.
Chen
,
C.
Moore
,
S. P.
Ong
, and
G.
Ceder
,
J. Mater. Chem.
21
,
17147
(
2011
).
7.
M. M.
Thackeray
 et al, “
Lithium-oxygen (air) electrochemical cells and batteries
,” U.S. patent 8,313,721 (20 November
2012
).
8.
J.
Christensen
,
P.
Albertus
,
R. S.
Sanchez-Carrera
,
T.
Lohmann
,
B.
Kozinsky
,
R.
Liedtke
,
J.
Ahmed
, and
A.
Kojic
,
J. Electrochem. Soc.
159
,
R1
(
2012
).
9.
K.
Németh
and
G.
Srajer
,
RSC Adv.
4
,
1879
(
2014
).
10.
P.
Novák
,
K.
Müller
,
K.
Santhanam
, and
O.
Haas
,
Chem. Rev.
97
,
207
(
1997
).
11.
R.
Archer
,
Inorganic and Organometallic Polymers
,
Special Topics in Inorganic Chemistry
Vol.
4
(
Wiley
,
2004
).
12.
D.
Downs
,
H.
Fair
, and
Z.
Iqbal
, “
Electric initiator containing polymeric sulfur nitride
,” U.S. patent 4,206,705 (10 June
1980
).
13.
U.
Ruschewitz
,
Z. Anorg. Allg. Chem.
632
,
705
(
2006
).
14.
J. Z.
Terdik
,
K.
Németh
,
K. C.
Harkay
,
J. H.
Terry
 Jr.
,
L.
Spentzouris
,
D.
Velázquez
,
R.
Rosenberg
, and
G.
Srajer
,
Phys. Rev. B
86
,
035142
(
2012
).
15.
K.
Cenzual
,
L. M.
Gelato
,
M.
Penzo
, and
E.
Parthé
,
Acta Crystallogr. B
47
,
433
(
1991
).
16.
H.
Yamane
,
S.
Kikkawa
, and
M.
Koizumi
,
J. Solid State Chem.
71
,
1
(
1987
).
17.
R.
DeVries
and
J.
Fleischer
,
Mater. Res. Bull.
4
,
433
(
1969
).
18.
J.
Goubeau
and
W.
Anselment
,
Z. Anorg. Allg. Chem.
310
,
248
(
1961
).
19.
F.
Pinkerton
and
J.
Herbst
,
J. Appl. Phys.
99
,
113523
(
2006
).
20.
H.
Yamane
,
S.
Kikkawa
,
H.
Horiuchi
, and
M.
Koizumi
,
J. Solid State Chem.
65
,
6
(
1986
).
21.
H.
Yamane
,
S.
Kikkawa
, and
M.
Koizumi
,
J. Power Sources
20
,
311
(
1987
).
22.
X.-Y.
Qiu
,
Q.-C.
Zhuang
,
Q.-Q.
Zhang
,
R.
Cao
,
P.-Z.
Ying
,
Y.-H.
Qiang
, and
S.-G.
Sun
,
Phys. Chem. Chem. Phys.
14
,
2617
(
2012
).
23.
F.
Waechter
and
R.
Nesper
, “
Coating and lithiation of inorganic oxidants by reaction with lithiated reductants
,” U.S. patent application 13/724,748 (27 June
2013
).
24.
T. H.
Mason
,
X.
Liu
,
J.
Hong
,
J.
Graetz
, and
E.
Majzoub
,
J. Phys. Chem. C
115
,
16681
(
2011
).
25.
K.
Németh
,
Int. J. Quantum Chem.
114
,
1031
(
2014
).
26.
F.
Zhou
,
M.
Cococcioni
,
K.
Kang
, and
G.
Ceder
,
Electrochem. Commun.
6
,
1144
(
2004
).
27.
A.
Jain
,
G.
Hautier
,
S. P.
Ong
,
C. J.
Moore
,
C. C.
Fischer
,
K. A.
Persson
, and
G.
Ceder
,
Phys. Rev. B
84
,
045115
(
2011
).
28.
T.
Mueller
,
G.
Hautier
,
A.
Jain
, and
G.
Ceder
,
Chem. Mater.
23
,
3854
(
2011
).
29.
K.
Kang
,
Y. S.
Meng
,
J.
Breger
,
C. P.
Grey
, and
G.
Ceder
,
Science
311
,
977
(
2006
).
30.
B.
Kang
and
G.
Ceder
,
Nature (London)
458
,
190
(
2009
).
31.
D. M.
Duong
,
V. A.
Dinh
, and
T.
Ohno
,
Appl. Phys. Exp.
6
,
115801
(
2013
).
32.
V. I.
Anisimov
,
J.
Zaanen
, and
O. K.
Andersen
,
Phys. Rev. B
44
,
943
(
1991
).
33.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
34.
J. P.
Perdew
,
A.
Ruzsinszky
,
G. I.
Csonka
,
O. A.
Vydrov
,
G. E.
Scuseria
,
L. A.
Constantin
,
X.
Zhou
, and
K.
Burke
,
Phys. Rev. Lett.
100
,
136406
(
2008
).
35.
L.
Schimka
,
J.
Harl
, and
G.
Kresse
,
J. Chem. Phys.
134
,
024116
(
2011
).
36.
P.
Giannozzi
,
S.
Baroni
,
N.
Bonini
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
G. L.
Chiarotti
,
M.
Cococcioni
,
I.
Dabo
 et al,
J. Phys.: Condens. Matter
21
,
395502
(
2009
); see http://www.quantum-espresso.org for a general description of the Quantum Espresso software package.
37.
A.
Huq
,
J. W.
Richardson
,
E. R.
Maxey
,
D.
Chandra
, and
W.-M.
Chien
,
J. Alloys Comp.
436
,
256
(
2007
).
38.
R. S.
Pease
,
Acta Crystallogr.
5
,
356
(
1952
).
39.
J.
McHale
,
A.
Navrotsky
, and
F.
DiSalvo
,
Chem. Mater.
11
,
1148
(
1999
).
40.
NIST-JANAF Themochemical Tables
, 4th ed., Journal of Physical and Chemical Reference Data: Monograph Issue 9, edited by
M. W.
Chase
 Jr.
(
American Chemical Society and the American Institute of Physics
,
Washington DC
,
1998
) [Online; accessed 2-May-2013], available at: http://webbook.nist.gov/chemistry/.
41.
S. S.
Wise
,
J. L.
Margrave
,
H. M.
Feder
, and
W. N.
Hubbard
,
J. Phys. Chem.
70
,
7
(
1966
).
42.
B.
Blaschkowski
, Ph.D. thesis, Universität Tübingen, Tübingen,
2003
; available at: http://tobias-lib.uni-tuebingen.de/volltexte/2003/882.
43.
S. B.
Schneider
,
R.
Frankovsky
, and
W.
Schnick
,
Angew. Chem.
124
,
1909
(
2012
).
44.
C.
Koz
,
S.
Acar
,
Y.
Prots
,
P.
Höhn
, and
M.
Somer
,
Z. Anorg. Allg. Chem.
640
,
279
(
2014
).
45.
M.
Bhamra
and
D.
Fray
,
J. Mater. Sci.
30
,
5381
(
1995
).
46.
A.
Rabenau
,
Solid State Ionics
6
,
277
(
1982
).
47.
Eti Maden Turkish Boron Mines [Online; accessed 19-July-2014], available at: http://en.etimaden.gov.tr/about-boron-62s.htm.
You do not currently have access to this content.