Equilibrium thermochemical measurements using the ion mobility drift cell technique have been utilized to investigate the binding energies and entropy changes for the stepwise association of HCN molecules with the pyridine and pyrimidine radical cations forming the C5H5N+·(HCN)n and C4H4N2+·(HCN)n clusters, respectively, with n = 1–4. For comparison, the binding of 1–4 HCN molecules to the protonated pyridine C5H5NH+(HCN)n has also been investigated. The binding energies of HCN to the pyridine and pyrimidine radical cations are nearly equal (11.4 and 12.0 kcal/mol, respectively) but weaker than the HCN binding to the protonated pyridine (14.0 kcal/mol). The pyridine and pyrimidine radical cations form unconventional carbon-based ionic hydrogen bonds with HCN (CHδ+⋯NCH). Protonated pyridine forms a stronger ionic hydrogen bond with HCN (NH+⋯NCH) which can be extended to a linear chain with the clustering of additional HCN molecules (NH+⋯NCH··NCH⋯NCH) leading to a rapid decrease in the bond strength as the length of the chain increases. The lowest energy structures of the pyridine and pyrimidine radical cation clusters containing 3-4 HCN molecules show a strong tendency for the internal solvation of the radical cation by the HCN molecules where bifurcated structures involving multiple hydrogen bonding sites with the ring hydrogen atoms are formed. The unconventional H-bonds (CHδ+⋯NCH) formed between the pyridine or the pyrimidine radical cations and HCN molecules (11–12 kcal/mol) are stronger than the similar (CHδ+⋯NCH) bonds formed between the benzene radical cation and HCN molecules (9 kcal/mol) indicating that the CHδ+ centers in the pyridine and pyrimidine radical cations have more effective charges than in the benzene radical cation.

1.
G. A.
Jeffrey
,
An Introduction to Hydrogen Bonding
(
Oxford University Press
,
Oxford, UK
,
1997
).
2.
C. L.
Perrin
and
J. B.
Nielson
, “
Strong hydrogen bonds in chemistry and biology
,”
Annu. Rev. Phys. Chem.
48
,
511
544
(
1997
).
3.
B. E.
Conway
,
Ionic Hydration in Chemistry and Biophysics
(
Elsevier
,
Amsterdam,
1981
).
4.
M.
Meot-Ner
,
Chem. Rev.
112
,
PR22
103
(
2012
).
5.
J.
Cerny
and
J. P.
Hobza
,
Phys. Chem. Chem. Phys.
9
,
5291
(
2007
).
6.
C.
Menor-Salvan
and
M. R.
Marin-Yaseli
,
Chem. Soc. Rev.
41
,
5404
5415
(
2012
).
7.
Y.
Ibrahim
,
E.
Alsharaeh
,
K.
Dias
,
M.
Meot-Ner
, and
M. S.
El-Shall
,
J. Am. Chem. Soc.
126
,
12766
12767
(
2004
).
8.
Y.
Ibrahim
,
E.
Alsharaeh
,
M.
Meot-Ner
,
M. S.
El-Shall
, and
S.
Scheiner
,
J. Am. Chem. Soc.
127
,
7053
7064
(
2005
).
9.
R.
Mabrouki
,
Y.
Ibrahim
,
E.
Xie
,
M.
Meot-Ner
, and
M. S.
El-Shall
,
J. Phys. Chem. A
110
,
7334
7344
(
2006
).
10.
P. O.
Momoh
and
M. S.
El-Shall
,
Phys. Chem. Chem. Phys.
10
,
4827
4834
(
2008
).
11.
C. N.
Matthews
and
R. D.
Minard
,
Faraday Discuss.
133
,
393
401
(
2006
).
12.
K. A.
Kvenvolden
,
J. G.
Lawless
, and
C. E.
Folsome
,
Scientific American
226
,
38
46
(
1972
).
13.
C. N.
Matthews
and
R. A.
Ludicky
,
Adv. Space Res.
12
,
21
32
(
1992
).
14.
M. J.
Mumma
 et al,
Science
310
,
270
274
(
2005
).
15.
M.
Meot-Ner
,
J. Am. Chem. Soc.
100
,
4694
4699
(
1978
).
16.
M.
Meot-Ner
and
C. V.
Speller
,
J. Phys. Chem.
93
,
3663
3666
(
1989
).
17.
A. M.
Hamid
,
A. R.
Soliman
, and
M. S.
El-Shall
,
J. Phys. Chem. A
117
,
1069
1078
(
2013
).
18.
I. K.
Attah
,
A. M.
Hamid
,
M.
Meot-Ner
,
S. G.
Aziz
,
A. O.
Alyoubi
,
M. S.
El-Shall
,
J. Phys. Chem. A
117
,
10588
10579
(
2013
).
19.
A. M.
Hamid
,
A. R.
Soliman
, and
M. S.
El-Shall
,
Chem. Phys. Lett.
543
,
23
27
(
2012
).
20.
Y.
Ibrahim
,
R.
Mabrouki
,
M.
Meot-Ner
, and
M. S.
El-Shall
,
J. Phys. Chem. A
111
,
1006
1014
(
2007
).
21.
A. M.
Hamid
,
P.
Sharma
,
R.
Hilal
,
S.
Elroby
,
S. G.
Aziz
,
A. O.
Alyoubi
, and
M. S.
El-Shall
,
J. Chem. Phys.
139
,
084304
(
2013
).
22.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al, GAUSSIAN 09, Revision A.1, Gaussian, Inc., Wallingford, CT,
2009
.
23.
See supplementary material at http://dx.doi.org/10.1063/1.4890372 for the arrival time distributions (ATDs) for the reactant and product ions to verify the attainment of equilibrium in the pyridine(HCN)n (Figure S1) and pyrimidine(HCN)n clusters (Figure S3), and calculated atomic charges and geometries of pyridine and pyrimidine radical cations, and protonated pyridine (Figure S2).
24.
NIST Chemistry WebBook
,
NIST Standard Reference Database Number 69
, edited by
P. J.
Linstrom
and
W. G.
Mallard
(
National Institute of Standards and Technology
,
Gaithersburg, MD
, (retrieved July 16,
2014
)), p.
20899
, see http://webbook.nist.gov.

Supplementary Material

You do not currently have access to this content.