Although TiO2/Au nanosystems exhibit high photocatalytic activities under solar radiation in the experiment, the quantum-size effect of TiO2 on the growth, electronic properties, and reactivity of Au clusters remains elusive. Using (time dependent) density functional theory, it is found that Au atoms attach to low-coordinated Ti and O atoms and serve as seeds for the growth of Au clusters, and the electronic (optical) properties of hybrid Au-TiO2 nano-clusters depend strongly upon the type of supported Au clusters. Interestingly, decorating TiO2 nano-particles with even-numbered Au clusters (Au8 or Au10) can enhance the photocatalytic activity by: (i) spatially separating electron and hole states and (ii) balancing redox strength and visible light absorption. Furthermore, the interactions between the Au-TiO2 clusters and a single water molecule have been studied. It will open up new avenues for exploring controlled photocatalysts in semiconductor-based quantum-confined systems.

1.
D.
Matthey
,
J. G.
Wang
,
S.
Wendt
,
J.
Matthiesen
,
R.
Schaub
,
E.
Lægsgaard
,
B.
Hammer
, and
F.
Besenbacher
,
Science
315
,
1692
(
2007
).
3.
Z. P.
Liu
,
X. Q.
Gong
,
J.
Kohanoff
,
C.
Sanchez
, and
P.
Hu
,
Phys. Rev. Lett.
91
,
266102
(
2003
).
4.
Z.
Novotný
,
G.
Argentero
,
Z.
Wang
,
M.
Schmid
,
U.
Diebold
, and
G. S.
Parkinson
,
Phys. Rev. Lett.
108
,
216103
(
2012
).
5.
X.
Tong
,
L.
Benz
,
P.
Kemper
,
H.
Metiu
,
M. T.
Bowers
, and
S. K.
Buratto
,
J. Am. Chem. Soc.
127
,
13516
(
2005
).
6.
J. G.
Wang
and
B.
Hammer
,
Phys. Rev. Lett.
97
,
136107
(
2006
).
7.
S. H.
Overbury
,
L.
Ortiz-Soto
,
H. G.
Zhu
,
B.
Lee
,
M. D.
Amiridis
, and
S.
Dai
,
Catal. Lett.
95
,
99
(
2004
).
8.
M. S.
Chen
and
D. W.
Goodman
,
Catal. Today
111
,
22
(
2006
).
9.
M.
Valden
,
X.
Lai
, and
D. W.
Goodman
,
Science
281
,
1647
(
1998
).
10.
P.
Panagiotopoulou
and
D. I.
Kondarides
,
J. Catal.
225
,
327
(
2004
).
11.
X.
Gong
,
A.
Selloni
,
O.
Dulub
,
P.
Jacobson
, and
U.
Diebold
,
J. Am. Chem. Soc.
130
,
370
(
2008
).
12.
S.
Chrétien
and
H.
Metiu
,
J. Chem. Phys.
126
,
104701
(
2007
).
13.
V.
Subramanian
,
E. E.
Wolf
, and
P. V.
Kamat
,
J. Am. Chem. Soc.
126
,
4943
(
2004
).
14.
A.
Sanchez
,
S.
Abbet
,
U.
Heiz
,
W. D.
Schneider
,
H.
Hakkinen
,
R. N.
Barnett
, and
U.
Landman
,
J. Phys. Chem. A
103
,
9573
(
1999
).
15.
S.
Lee
,
C.
Fan
,
T.
Wu
, and
S. L.
Anderson
,
J. Am. Chem. Soc.
126
,
5682
(
2004
).
16.
A.
Wolcott
,
W. S.
Smith
,
T. R.
Kuykendall
,
Y.
Zhao
, and
J. Z.
Zhang
,
Small
5
,
104
(
2009
).
17.
G.
Wang
,
H.
Wang
,
Y.
Ling
,
Y.
Tang
,
X.
Yang
,
R. C.
Fitzmorris
,
C.
Wang
,
J. Z.
Zhang
, and
Y.
Li
,
Nano Lett.
11
,
3026
(
2011
).
18.
Z.
Zhang
,
M. F.
Hossain
, and
T.
Takahashi
,
Int. J. Hydrogen Energy
35
,
8528
(
2010
).
19.
I. S.
Cho
,
Z.
Chen
,
A. J.
Forman
,
D. R.
Kim
,
P. M.
Rao
,
T. F.
Jaramillo
, and
X.
Zheng
,
Nano Lett.
11
,
4978
(
2011
).
20.
Z. W.
She
,
S.
Liu
,
M.
Low
,
S. Y.
Zhang
,
Z.
Liu
,
A.
Mlayah
, and
M. Y.
Han
,
Adv. Mater.
24
,
2310
(
2012
).
21.
Z.
Zhang
,
L.
Zhang
,
M.
Hedhili
,
H.
Zhang
, and
P.
Wang
,
Nano Lett.
13
,
14
(
2013
).
22.
S.
Mubeen
,
G.
Hernandez-Sosa
,
D.
Moses
,
J.
Lee
, and
M.
Moskovits
,
Nano Lett.
11
,
5548
(
2011
).
23.
N.
Marom
,
M.
Kim
, and
J. R.
Chelikowsky
,
Phys. Rev. Lett.
108
,
106801
(
2012
).
24.
Z. W.
Qu
and
G. J.
Kroes
,
J. Phys. Chem. B
110
,
8998
(
2006
);
[PubMed]
Z. W.
Qu
and
G. J.
Kroes
,
J. Phys. Chem. C
111
,
16808
(
2007
).
25.
D.
Cakir
and
O.
Gülseren
,
J. Phys.: Condens. Matter
24
,
305301
(
2012
).
26.
H. J.
Zhai
and
L. S.
Wang
,
J. Am. Chem. Soc.
129
,
3022
(
2007
).
27.
H.
Himeno
,
K.
Miyajima
,
T.
Yasuike
, and
F.
Mafuné
,
J. Phys. Chem. A
115
,
11479
(
2011
).
28.
A.
Iwase
,
H.
Kato
, and
A.
Kudo
,
Catal. Lett.
108
,
7
(
2006
).
29.
J.
Oliver-Meseguer
,
J. R.
Cabrero-Antonino
,
I.
Dominguez
,
A.
Leyva-Perez
, and
A.
Corma
,
Science
338
,
1452
(
2012
);
[PubMed]
A.
Corma
,
P.
Concepción
,
M.
Boronat
,
M. J.
Sabater
,
J.
Navas
,
M. J.
Yacaman
,
E.
Larios
,
A.
Posadas
,
M. A.
López-Quintela
,
D.
Buceta
,
E.
Mendoza
,
G.
Guilera
, and
A.
Mayoral
,
Nat. Chem.
5
,
775
(
2013
).
[PubMed]
30.
Y.
Wang
,
J.
Lv
,
L.
Zhu
, and
Y.
Ma
,
Phys. Rev. B
82
,
094116
(
2010
).
31.
J.
Lv
,
Y.
Wang
,
L.
Zhu
, and
Y.
Ma
,
J. Chem. Phys.
137
,
084104
(
2012
).
32.
J.
Lv
,
Y.
Wang
,
L.
Zhu
, and
Yanming
Ma
,
Phys. Rev. Lett.
106
,
015503
(
2011
);
[PubMed]
Y.
Wang
,
H.
Liu
,
J.
Lv
,
L.
Zhu
,
H.
Wang
, and
Y.
Ma
,
Nat. Commun.
2
,
563
(
2011
).
[PubMed]
33.
S. J.
Clark
,
M. D.
Segall
,
C. J.
Pickard
,
P. J.
Hasnip
,
M. I. J.
Probert
,
K.
Refson
, and
M. C.
Payne
,
Z. Kristallogr.
220
,
567
(
2005
).
34.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
);
[PubMed]
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
78
,
1396
(
1997
).
35.
B.
Delley
,
J. Chem. Phys.
92
,
508
(
1990
).
36.
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
,
J. Chem. Phys.
118
,
8207
(
2003
);
A.
Krukau
,
O.
Vydrov
,
A.
Izmaylov
, and
G.
Scuseria
,
J. Chem. Phys.
125
,
224106
(
2006
).
[PubMed]
37.
See supplementary material at http://dx.doi.org/10.1063/1.4891241 for the structures of Au deposited on (TiO2)n=5−9 clusters.
38.
L.
Chiodo
,
J. M.
García-Lastra
,
D. J.
Mowbray
,
A.
Iacomino
, and
A.
Rubio
, “
Tailoring electronic and optical properties of TiO2: Nanostructuring, doping and molecular-oxide interactions
,” in
Computational Studies of New Materials: From Nanostructures to Bulk Energy Conversion Materials
, edited by
T. F.
George
,
D.
Jelski
,
R. R.
Letfullin
, and
G.
Zhang
(
World Scientific
,
Singapore
,
2011
).
39.
Y.
Gai
,
J.
Li
,
S. S.
Li
,
J. B.
Xia
, and
S. H.
Wei
,
Phys. Rev. Lett.
102
,
036402
(
2009
).
40.
Y.
Matsuda
and
E.
Bernstein
,
J. Phys. Chem. A
109
,
314
(
2005
).
41.
R.
Schaub
,
P.
Thostrup
,
N.
Lopez
,
E.
Lægsgaard
,
I.
Stensgaard
,
J. K.
Nørskov
, and
F.
Besenbacher
,
Phys. Rev. Lett.
87
,
266104
(
2001
).
42.
Y.
Du
,
N. A.
Deskins
,
Z.
Zhang
,
Z.
Dohnálek
,
M.
Dupuis
, and
I.
Lyubinetsky
,
Phys. Rev. Lett.
102
,
096102
(
2009
).

Supplementary Material

You do not currently have access to this content.